Annual Research Briefs — 2001

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

Center for Turbulence Research

December 2001




CONTENTS

Preface ' 1

Large-eddy simulation of gas turbines combustors. K. MAHESH, G. CONSTANTINESCU,
S. APTE, G. JACCARINO and P. MOIN 3

Consistent boundary conditions for integrated LES/RANS simulations: LES outflow con-
ditions. J. U. SCHLUTER and H. PITSCH 19

Explicit filtering and subgrid-scale models in turbulent channel flow. J. GULLBRAND 31

Prediction of high Reynolds number flow over a circular cylinder using LES with wall

modeling. M. WANG, P. CATALANO and G. JIACCARINO 45
An experimental and computational investigation of flow past cacti. S. TALLEY, G.
IaccARINO, G. MUNGAL and N. N. MANSOUR 51
Interacting flamelet model for non-premixed turbulent combustion with local extinction
and re-ignition. H. P1TscH, S. FEDOTOV and C. M. CHA 65
Transported PDF modeling of turbulent nonpremixed combustion. C. M. CHA 79

Higher-order singly-conditional moment closure modeling approaches to turbulent com-
bustion. C. M. CHA and H. PITSCH 87

Progress in large eddy simulation of premixed and partially premixed turbulent combus-
tion. L. DUCHAMP DE LAGENESTE and H. PITSCH 97

Generalized symmetries of the G-equation without underlying flow field.
M. OBERLACK 109

Large-eddy simulations of combustion instability suppression by static turbulence control.
J. U. SCHLUTER 119

Combustion instability due to the nonlinear interaction between sound and flame. X.
Wvu, M. WANG and P. MoiN 131

DNS of transition in hypersonic boundary-layer flows including high-temperature gas
effects. C. STEMMER and N. N. MANSOUR , 143

Temperature-fiuctuation scaling in reacting boundary layers. M. P. MARTIN and G. V.
CANDLER 151

Preliminary LES over a hypersonic elliptical cross-section cone. M. P. MARTIN, M.
WRIGHT, G. V. CANDLER, U. PIOMELLI, G. WEIRS and H. JOHNSON 163

Stochastic sub-grid modeling of drop breakup for LES of atomizing spray. M. GOROKH-
OVSKI and S. APTE 169

Study of the turbulence modulation in particle-laden flows using LES. J. GArcia 177
A formulation for fast computations of rigid particulate flows. N. A. PATANKAR 185

Direct numerical simulation of polymer flow. Y. DUBIEF and S. K. LELE 197

21)



Structure and evolution of circumstellar disks during the early phase of accretion from a

parent cloud. O. C. Ipowvu 209
Modeling blood flow in a porcine aorta bypass graft: realization of physiological condi-
tions. V. FaVIER and C. A. TAYLOR 219
An evolutionary algorithm for multi-objective optimization of combustion processes. D.
BicHE, P. STOLL and P. KOUMOUTSAKOS 231
Shape optimization for aerodynamic noise control. A. L. MARSDEN, M. WANG and B.
MOHAMMADI 241
Incomplete sensitivities in design and control of fluidic channels. B. MOHAMMADI, R.
Buarawal, J. I. MOLDHO and J. SANTIAGO 249
Efficient Fast Multipole Method for low frequency scattering. E. DARVE 259
Calculating free energies using average force. E. DARVE and A. POHORILLE 271

Buckyballs in water: structural characteristics and energetics. E. M. KoTsALis, R. L.
JAFFE, J. H. WALTHER, T. WERDER and P. KOUMOUTSAKOS 283

Instability of Blasius boundary layer in the presence of steady streaks. X. WU and J.

Luo 293
Effects of long-wavelength Klebanoff modes on boundary-layer instability. X. Wu and
M. CHOUDHARI 305
The large-scale organization of autonomous turbulent wall regions. J. J IMENEZ, O. FLO-
RES and M. GARCIA-VILLALBA 317
Direct numerical simulation of the very large anisotropic scales in a turbulent channel.
J. C. DEL ALAMO and J. JIMENEZ 329
CFD analysis of flow in an open-jet aeroacoustic experiment. S. MOREAU, G. IAc-
CARINO, M. ROGER and M. WANG 343
RANS solver with adaptive structured boundary non-conforming grids. S. MAJUMDAR,
G. IACCARINO and P. Durbin 353
Modeling the “rapid” part of the velocity /pressure-gradient correlation inhomogeneous
turbulence. S. V. POROSEVA 367
Simulating separated flows using the k — € model. S. V. POROSEVA and

G. IACCARINO 375
Wall corrections in modeling rotating pipe flow. S. V. POROSEVA 385

Appendix: Center for Turbulence Research 2000 Roster 397

v



Center for Turbulence Research 1
Annual Research Briefs 2001

Preface

This report contains the 2001 Annual Progress Reports of the postdoctoral fellows and
visiting scholars of the Center for Turbulence Research. In 2001 CTR sponsored 15 resi-
dent Postdoctoral Fellows, 7 Research Associates and 3 Senior Research Fellows, hosted
7 visiting scholars and many shorter-term visitors, and supported 6 doctoral students.
Most of the doctoral students engaged in turbulence research at CTR are supported by
the U.S Office of Naval Research or the Air Force Office of Scientific Research.

CTR is closely associated with the Stanford multidepartmental Center for Integrated
Turbulence Simulations (CITS), funded by the Department of Energy’s Accelerated
Strategic Computing Initiative (ASCI). The aim of the CITS program is to compute
the complete flow through an aircraft gas turbine engine. The combustion chamber is
the most critical region: it is typically of very complicated geometrical shape, and the
fuel is introduced as a spray of droplets which must disperse and vaporize before burn-
ing. The first paper in this volume describes large-eddy simulation of the air flow in a
real aircraft gas turbine combustor, and there are several papers relevant to the crucial
problem of spray combustion.

The two most noticeable features of this year’s reports are the application of large-eddy
simulation (LES) to a wide range of practical problems, and the continued broadening of
the Center’s interests, especially in natural phenomena: the Center’s alphabet could start
with Astrophysics, Buckyballs and Cacti. The diversification of interests has brought with
it an increasing number of contacts with industry and with other branches of the natural
sciences and life sciences.

The papers fall into seven groups: in order, these are: large-eddy simulation; combustion
and hypersonics; sprays and particles; control and optimization; molecular dynamics;
instability, acoustics and turbulence structure; and Reynolds-averaged turbulence models
(RANS models). Many papers could be included in more than one group, so the groups
are not explicitly labeled in the Contents. The common theme, of course, is that these
are computer-intensive problems.

As is recognized in the aircraft-engine industry, large-eddy simulation is becoming
a powerful engineering tool for predicting internal flows and mixing in real propulsion
systems, where Reynolds numbers are low (compared to those in external aerodynamics)
and the flow can be separated and highly unsteady. These flow conditions are difficult
to capture with RANS models, but can be accurately predicted by LES because they
are dominated by large-scale motions. The problem of economically computing high-
Reynolds-number attached or separating flows remains. Here all eddies are small, and
if the LES is carried right down to the surface then either the mesh has to be so fine
that the calculation reduces to DNS, or the sub-grid-scale model has to carry most of
the Reynolds stresses and the calculation effectively reduces to RANS. The first one is
impossibly expensive and the other is likely to compromise accuracy. Since the day of
widespread industrial use of LES has not yet arrived, CTR continues to support work on
Reynolds- averaged models.

Combustion is a long-standing interest at CTR, and the work has received a boost
from the appointment of Prof. Norbert Peters to the Department of Mechanical Engi-
neering. Much of our work is supported by NASA’s Ultra Efficient Engine Technology
(UEET) Program. Hypersonic flow with real-gas effects shares many of the problems of
combustion, and is also an ongoing interest of NASA.



The importance of spray dynamics in combustion of liquid fuels has been mentioned
above: the behavior of particle- laden flows in general is of very wide engineering interest.
A special case of particle-laden flow is the long-standing mystery of liquid flow with a
suspension of long-chain polymer molecules: spectacular reductions in flow resistance can
be achieved but the mechanism is still controversial.

Control and optimization, of turbulent flow or of other systems, is another long-
standing interest at CTR, and again is relevant to many branches of engineering.

Molecular dynamics, far though it is from CTR’s original interests, is a fast-developing
field involving very intensive computing.

Instability problems are closely related to control problems, notably in the case of
combustion. Instability of laminar flows is yet another problem that is yielding to inten-
sive computing in the form of DNS. The phenomenological relation between the earlier
stages hydrodynamic instability and final, fully-developed turbulence may not be very
close, but the computational problems are virtually identical. Aeroacoustics and turbu-
lence structure are the original interests of CTR, and basic research on these topics is
still the foundation of improved models, whether the sub-grid-scale models of LES or the
traditional RANS models used in industry.

We are grateful to Professor Peter Bradshaw for his thorough technical editing of the
reports in this volume. We welcome Peter’s participation in CTR in this capacity and
his increased interactions with the CTR research staff.

Parviz Moin
William C. Reynolds
Nagi N. Mansour

This volume, like other CTR progress-report volumes, is available as a .pdf file on the
Web at http://ctr.stanford.edu
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Large-eddy simulation of gas turbine combustors

By Krishnan Mahesh }, George Constantinescu, Sourabh Apte, Gianluca
Iaccarino AND Parviz Moin

1. Motivation and objectives

This report discusses our progress towards developing a numerical algorithm, and solver
capable of performing large-eddy simulation in geometries as complex as the combustor of
a gas-turbine engine. LES is considered a particularly attractive approach for combustor
simulation because of its demonstrated superiority over RANS in predicting mixing. A
working combustor ~ the PW6000 — is chosen to develop and demonstrate LES capability.

As discussed in previous reports (Mahesh et al. 1999, 2000), an algorithm and LES
solver for unstructured grids are under development.

2. Accomplishments

Our progress in the last year is as follows:

e A new formulation was derived that is discretely energy-conserving for arbitrary
grids. This was found essential to perform simulations at high Reynolds numbers, and on
‘bad’ grids encountered in complex geometries such as the Pratt & Whitney combustor.

o Turbulent validations were performed for the swirling flow in a coaxial combustor
geometry, flow over a cylinder and turbulent channel flow.

e Turbulent simulations were initiated in the complex Pratt & Whitney combustor.
Also simulations were performed in a test rig geometry used by Pratt & Whitney for
which experimental data is available.

e A spray module was integrated with the gas-phase solver. Validation simulations in
a swiring coaxial combustor geometry Sommerfeld & Qiu (1991) were performed. Spray
simulations in the Pratt & Whitney combustor were initiated.

3. Algorithm improvements
3.1. Base algorithm

Recall that the algorithm described at the end of last year’s report stored pressure at the
centroids of the elements, and velocity at their faces. As shown in figure 1, only the normal
component of velocity was stored and advanced in time; the other two components were
reconstructed. The velocity component v, satisfied,

vy, 9 (i@ 10p o

— - @x®) A+ = |— | =—==+v (VT 7. 3.1
@xa)- i+ g (50) =221 (v2a) )

The convection term was written in terms of velocity and vorticity, and the pressure-

projection approach was used to ensure that the velocity field was discretely divergence-

free. As shown in last year’s report, good results were obtained for laminar unsteady

flows, and low Reynolds number turbulent flows in complex geometries.

t Aerospace Engineering and Mechanics, University of Minnesota
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FIGURE 1. Positioning of variables in staggered algorithm.
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FiGurg 2. Illustration of the importance of discretely conserving kinetic energy. The kinetic
energy is plotted against time for the Taylor problem at (a): Re = 10°, and (b): Re = 1. At
the lower Reynolds number, both schemes are stable. At higher Reynolds number, only the
energy-conserving scheme is stable. The solid circles in (b) denote the analytical solution; the
energy-conserving formulation passes through them.

However, problems with robustness were experienced this year when the simulations
were extended to high Reynolds number, and to ‘bad’ grid elements that are inevitable
in complex geometries such as the combustor geometry provided by Pratt & Whitney. It
was established that the robustness problems were caused by the fact that the algorithm
only conserved momentum, and not kinetic energy, on arbitrary grids with highly skewed
elements.

An alternative formulation was derived, in which the convection term discretely con-
serves kinetic energy for arbitrary grids. Recall that discrete energy conservation refers to
the fact that for incompressible flow, the convection term in the kinetic energy equation
is expressible in divergence form, i.e. 8/0z; (ujuiu;/2). Conservation of momentum and
the continuity equation ensure kinetic energy conservation for the continuous equations;
however the same is not true for the discrete equations, where momentum conservation
does not imply energy conservation. It is readily seen that kinetic energy conservation is
a desirable feature for the algorithm since it implies that the Ly norm is bounded.

The basic idea behind the new formulation is as follows. The traditional fractional-
step algorithm on structured grids stores the face-normal velocity component on all faces.
Control volumes are then identified around the faces, and the momentum equation for
the velocity component is advanced in time. The primary reason for staggering is that
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FiGuRE 3. Kinetic energy of isotropic turbulence is plotted against time at varying Reynolds
numbers. The Reynolds number is increased from 10?%,10%,10%,10° and 10° respectively. Note
that the scheme is robust even at the highest Reynolds numbers.

the pressure equation does not suffer from odd-even decoupling. However, solution of
the momentum equation requires that the velocity components tangential to the face
be known. These are obtained through interpolation. The interpolant has to be care-
fully constructed such that the resulting momentum equation implies conservation of
kinetic energy. There are two problems with extending this approach to arbitrary un-
structured grids: (i) defining control volumes around the faces in three-dimensions is
complicated; furthermore, skewed elements yield highly skewed control volumes. (ii) the
resulting interpolation for the tangential velocities is unacceptably inaccurate if discrete
energy conservation is required. We base these statements on actual computations per-
formed using an energy-conserving formulation that we derived from a fully staggered
formulation. The resulting formulation yielded acceptable results for Cartesian grids but
was unacceptably inaccurate for the complex Pratt & Whitney combustor geometry.

An alternative formulation was therefore derived. Velocity and pressure are now stored
at the centroids of the volumes. The cell-centered velocities are advanced in the predic-
tor step such that kinetic energy conservation is ensured for the predictor step. These
predicted velocities are then interpolated to the faces and then projected. Both interpo-
lation and projection are robust procedures since they do not add energy to the solution
(when the computational stencil uses local neighbors). Projection yields the pressure
potential at the cell-centers, and the pressure gradient is used to correct the cell veloci-
ties. A straightforward use of the gradient theorem yields very good results on smooth
grids, but is found unacceptable for highly skewed or very rapidly varying grids. This
lack of robustness can be explained from an energy-conservation point of view. A novel
discretization for the pressure gradient was derived. This formulation of the algorithm
has been found to yield very good results for both ‘simple’ problems (Taylor problem,
isotropic turbulence, channel, cylinder, coaxial combustor) as well as the exceedingly
complex geometry of the Pratt & Whitney combustor.

The importance of discrete energy conservation is illustrated in Fig. 2, which shows the
evolution of kinetic energy in the Taylor problem ~ an analytical solution, which describes
counter-rotating vortices that decay in time. Qur energy-conserving formulation is com-
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Gas Phase (Air) | | Particle Phase (Glass) ‘ ‘

Flow rate in primary jet, g/s |[9.9 Loading Ratio in Primary Jet [ 0.034

Flow rate in secondary jet, g/s|38.3 |Flow rate, g/s 0.34
Inlet Reynolds number 26200 | Density ratio, pp/ps 2152
Swirl number 0.47

TaBLE 1. Flow conditions and particle properties used in the Sommerfeld & Qiu (1991)
experiments.

pared to a non-dissipative formulation that only conserves momentum. Both formulations
have the same computational stencil. At low Reynolds numbers, where the dissipative
scales are resolved, both formulations are stable, although the energy-conserving formula-
tion shows better agreement with the analytical result. However, at very high Reynolds
numbers where the dissipative scales are not resolved, the formulation that does not
conserve kinetic energy becomes unstable after some time, while the energy conserving
formulation is seen to maintain its initial kinetic energy as required by the analytical
solution. Figure 3 shows the decay of turbulent kinetic energy of isotropic turbulence
when computed on a coarse grid (32%). The Reynolds number is increased from 100 to
10°. No subgrid model is used. Even the lowest Reynolds number is not completely re-
solved at this resolution. Note however that the solution does not become numerically
unstable; instead it exhibits the proper Reynolds number sensitivity (reduced decay rate
with increasing Reynolds number). It is this robustness that makes accurate LES of high
Reynolds number flows possible.

3.2. Integration with spray modules

The gas-phase solver was extended to include the effect of liquid droplets. The droplets
are modeled as point particles which satisfy Lagrangian equations. They influence the gas
phase through source terms in the gas-phase equations. As the particles move, their posi-
tion is located and each particle is assigned to a control volume of the gas-phase grid. The
gas-phase properties are interpolated to the particle location and the particle equations
are solved. The particles are then relocated, particles that cross interprocessor boundaries
in our parallel computaton are duly transferred, source terms in the gas-phase equation
are computed, and the computation is further advanced. Spray integration involves the
following key issues: (i) Efficient search and location of droplets on an unstructured grid
(ii) Interpolation of gas-phase properties to the droplet location for arbitrarily shaped
control volumes (iii) inter-processor droplet transfer.

3.2.1. Locating particles in elements of arbitrary shape

Locating particles in a generalized-coordinate structured code is straightforward, since
the physical coordinates can be transformed into a uniform computational space. How-
ever, this is not the case for unstructured grids. Westermann (1992) describes several
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FIGURE 4. (a) Schematic of the known-vicinity algorithm to track particle positions on
unstructured grids. (b)) Comparison of the brute force and known vicinity search algorithms.

approaches to locate particles in particle-in-cell codes. Two such techniques are imple-
mented in the unstructured code, and are described below.

One approach to determining whether a particle lies inside a control volume is based
on the calculation of partial volumes. The nodes of the control volume are joined to the
particle location, and the volumes of the resulting sub-cells are compared to that of the
control volume. If the particle lies inside the control volume, the sum of the sub-cell
volumes will be equal to the total volume. The advantage of this method is that it can be
applied to all control volumes simultaneously and a separate search algorithm for particle
location is not required. However, the method is slow since it involves computations of
partial volumes for each cell. Also, it was found to fail drastically for highly skewed
meshes due to inaccuracies in the computation of partial volumes.

The second approach projects the particle location onto the faces of the control volume
and compares these vectors with outward face-normals for all faces. If the particle lies
within the cell, the projected vectors point the same way as the outward face-normals.
This technique, although more accurate, requires a search algorithm to select the control
volume to which the criterion is applied.

3.2.2. Search algorithms for particles on unstructured grids

Three approaches were examined and are termed the brute-force, modified-brute-force
and known-vicinity approaches respectively. The brute-force approach simply loops over
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FIGURE 5. Comparison of the unstructured solver to a structured solver using the same grid.
Results correspond to turbulent Reynolds stresses in a turbulent channel at Re; = 180 on a
coarse (32 x 64 x 32) grid. The structured grid results were kindly provided by Dr. Bill Cabot,
Lawrence Livermore National Laboratory.

all the elements of the grid and applies the localization criterion described above. As
expected, it is extremely slow when particles number about a million, as is the case even
for coarse LES. The modified-brute-force approach evaluates the closest point of the
mesh to the particle location and only considers the elements surrounding that point.
Should this attempt (which in general is very successful) fail, the elements surrounding
all the close points are considered. If this also fails for some pathological cases Lohner
(1995), the search region is enlarged or the brute-force method is applied. This modified
approach is found effective to initialize particles, and as a fall-back position for more
refined algorithms.

Given a good initial guess for a particle location, the known-vicinity algorithm out-
performs all others Lohner (1995). Particle location at earlier time-steps provide a very
good initial guess in LES. Knowing the initial and final location of the particle, this al-
gorithm searches in the direction of the particle motion until it is relocated (Fig. 4). The
neighbor-to-neighbor search is extremely efficient if the particle is located within 10-15
attempts, which is usually the case for 90% of the particles in present simulations. If this
algorithm fails, we fall back to the ‘modified-brute-force’ method to locate the particle.
A combination of these two algorithms is found highly efficient and robust for complex
geometries and hybrid meshes encountered in realistic combustor geometries.

The known-vicinity algorithm is compared to the modified-brute-force method in Fig.
4. Two cases are considered: (i) domain size is fixed, and the particles are displaced for 2-3
cell-sizes in all three coordinate directions, (ii) the number of particles is kept fixed (1000
particles) and the element size per processor is increased. The known-vicinity approach
is seen to be noticeably better than the modified-brute-force approach. Note that these
comparisons were performed on a single processor of an Origin 2000.

Least-squares interpolation is used to interpolate gas-phase properties linearly each to
particle location. Also particles that cross interprocessor boundaries are assigned to the
ghost control volumes of the gas-phase solver, and then passed across processors.

4. Validation

The gas-phase solver was validated for a variety of benchmark flows: Taylor problem,
isotropic turbulence, turbulent channel flow, flow over a cylinder, and the turbulent flow
in a coaxial combustor. The simulations in the coaxial combustor geometry also included
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FIGURE 6. Cross-section of the grid and particles superposed on contours of instantaneous
axial velocity in LES of the flow in a coaxial combustor geometry. Conditions correspond to an
experiment by Sommerfeld & Qiu (1991). Only part of the computational domain is shown for
clarity.

particles. The purpose of these validation studies was to establish that the algorithm can
accurately simulate turbulence, is robust at high Reynolds numbers and on ‘bad’ grids,
and has accuracy is comparable to that of structured grid solvers that use the same grid
and computational stencil. Some of these validation cases are reported below.

Figure 5 shows results from computations of turbulent channel flow at Re, =180 on a
very coarse grid (32 x 64 x 32). No subgrid model was used. Despite its simplicity, channel
flow is known to be very sensitive to errors arising from the non-linear terms. On very
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FIGURE 7. Comparison between LES ( ) and experiment (o ), Sommerfeld & Qiu (1991)
for the gas-phase of particle-laden swirling flow in a coaxial combustor. (a): mean axial velocity,
(b): mean swirl velocity, (c): mean radial velocity, (d) turbulent kinetic energy.
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coarse grids, the turbulence in the channel can either decay or the entire solution can
blow-up depending upon the numerical algorithm used. We compare our results to those
provided by Dr. Bill Cabot (Lawrence Livermore National Laboratory) from a structured
solver using the second-order staggered grid and fractional step approach on the same
grid. The comparison shows that the accuracy of the unstructured algorithm is nearly
the same as a structured solver for structured grids.

The flow in a swirl-stabilized coaxial combustor represents an important validation
case. Sommerfeld & Qiu (1991) provide detailed measurements of this flow, which tests
both the gas-phase solver and the spray module. A cross-section of the geometry and the
unstructured mesh used for simulating this particle-laden flow is shown in Fig. 6. The
flow is from left to right, and consists of a primary jet issuing out of the core, and a
swirling jet issuing out of the annulus. The primary jet is laden with glass beads whose
diameter varies from 20 microns to 80 microns. Detailed flow conditions and particle
properties are summarized in Table 1. As a result of the swirl, the streamlines diverge
as they exit into the dump region, and a recirculation region is set up (Fig. 6). The
computations used an unstructured grid composed of approximately 2 million hexahedral
elements. Turbulent fluctuations from a separate calculation are specified at the inflow
and convective boundary conditions are imposed at the exit. The dynamic subgrid model
was used. At the time of writing, flow statistics for the gas- and particle-phases have
been computed. Figure 7 compares computed profiles of mean and turbulent gas-phase
velocities with experiment, while Fig. 8 compares the corresponding particle statistics.
In addition, variation of mean particle diameter is also compared. Good agreement is
observed.

5. Simulations in Pratt & Whitney combustor

Validation calculations are being performed in the combustor of the PW6000 engine.
These calculations are seen as a prerequisite to integrating the unstructured solver with
the turbomachinery code. As shown in Fig. 9, the geometry of the PW6000 combustor is
exceedingly complex, and poses serious challenges to both grid-generation and the solver.
These simulations are being performed in two steps: (i) mixing of a passive scalar by cold
flow (ii) introduction of heat release. The cold flow calculation is in progress, and results
are reported below. Validation data is available for bulk quantities such as mass-splits
and pressure drops for this case. Cold flow simulations are also being performed in a
simpler configuration, termed the front-end validation model. This geometry has exactly
the same fuel injector and combustion chamber as the PW6000 combustor, but is fed
by a cylindrical plenum and does not have dilution holes (Fig. 13). It is being simulated
because detailed LDV measurements are available from Pratt & Whitney. Note that the
injector is the most geometrically complex component of the entire combustor. Quanti-
tative validation for the front-end model will therefore establish considerable confidence
in the results obtained for the PW6000 combustor.

5.1. Grid generation

A commercial grid generator (GAMBIT, Fluent Corporation) was used for grid gener-
ation. Both geometries (the PW6000 combustor and front-end validation model) were
received from Pratt & Whitney as IGES files. The PW6000 geometry contained more
than 9000 entities (surfaces, edges, vertices) which were cleaned up and reduced to 1200
entities. As shown in Fig. 9, the combustor chamber is fed by three coaxial swirlers
and several dilution holes. The inlet air passes through the pre-diffuser and follows two
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paths; the main stream flows through the swirlers and enters the chamber, while the
secondary stream is diverted to the outer diffusers and enters the combustor through the
dilution holes. Diversion of the outer diffuser air to secondary systems, and transpiration
air through the liners of the main combustor, were not considered in the computations
reported here; they are currently being included. The computational domain was divided
into about 100 volumes for grid-generation; hexahedral meshes were generated over about
85% of the volumes. Tetrahedral meshes were generated for the swirlers, and pyramids
were used to connect tetrahedral and hexahedral elements. An initial coarse grid has
been generated; it contains about 1.3M elements (0.6M tetrahedra, 0.65M hexahedra).
Figure 9 shows the grid. The level of geometrical complexity is obvious. Also note that
the coarse grid consists of highly-skewed elements with rapid variations in element size
and type. Figure 13 shows a schematic of the grid generated for the front-end valida-
tion model. The procedure described above was used to generate two grids: coarse (2.2M
elements) and fine (4.5M elements).

5.2. Results

The flow conditions for the PW6000 combustor simulations are as follows. The flow into
the pre-diffuser of the PW6000 is at a bulk Reynolds number of 500,000, which corre-
sponds to a Reynolds number of approximately 150,000 in the main swirler, based on the
diameter and flow rate through the swirler. Turbulent fluctuations from a separate com-
putation in a pipe sector are specified at the inflow, and convective boundary conditions
are specified at the exit. The flow in the domain was initialized to be at rest. Statistics
were gathered after initial transients exited the domain.

The first computation performed in this geometry was at a very low Reynolds number
of 1000, and did not include a subgrid model. Its objective was to assess the ability of the
algorithm to handle a geometry with this level of complexity, and a mesh with extreme
variations in size and element skewness. It was found that while geometrical complexity
was adequately handled, ‘bad’ regions of the mesh posed severe problems. Thes¢ prob-
lems were explained from energy-conservation principles, and the above-mentioned novel
discretization was derived for the pressure gradient. This fundamental change in the al-
gorithm has proven to be extremely successful in terms of its ability to handle complex
geometries, high Reynolds numbers, and bad grids.

Figure 10 shows contour plots of both instantaneous and mean flow-fields in the
PW6000 combustor. The flow in the diffuser is seen to be attached, it then passes
smoothly through regions where the mesh rapidly changes, swirl is generated by the
swirlers, and the flow in the dump region is determined by the interaction between the
swirling primary jets and the dilution jets. Also shown in Fig. 11 are velocity contours
from a computation on the same grid at the significantly lower inlet Reynolds number
of 1000. No subgrid model was used in the low Reynolds number computations, while
the high Reynolds number computations used the Smagorinsky model. The results at
low Reynolds number are seen to be strikingly different, in that no recirculation region is
seen downstream of the injector; instead the primary flow is jet-like. This behavior can
be explained on physical grounds; the swirl that is generated by the swirler decays in the
channel downstream of the swirler before the flow exits into the dump region. The decay
rate of swirl is determined by the viscosity. At low Reynolds number, the decay of swirl
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FIGURE 9. Illustration of the geometry and surface mesh in the PW6000 combustor geometry.

is significant enough that the exiting jet has negligible levels of swirl, and as a result no
recirculation region is formed. On the other hand, at high Reynolds number the swirl
velocity does not decay very much in the channel and, as a result, the exiting swirling
jets diverge and a recirculation region is formed. This Reynolds-number sensitivity ob-
served on a coarse grid is very encouraging, and reinforces the importance of having an
algorithm that is robust without being dissipative.

The computations in the PW6000 geometry did not include the effect of outer-diffuser
air being diverted to secondary systems, and transpiration air through the liner of the
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FIGURE 10. Contours of instantaneous velocity magnitude in LES of flow in the PW6000
combustor geometry.

FIGURE 11. Contours of instantaneous velocity magnitude in the PW6000 combustor at a low
inlet Reynolds number of 1000. Notice that flow downstream of the injector is jet-like instead
of showing recirculation as in the high Reynolds number results shown above.

combustor. These effects have now been included, and a computation on the same grid is
in progress. These results will be compared to bulk data like mass flow splits and mean
pressure drops that will be made available by Pratt & Whitney. Also, computations are
underway with particles; an instantaneous snapshot is shown in Fig. 12.

The front-end validation model is an important validation case because it uses the same
injector as the PW6000 simulation. LDV data is available at three stations downstream
of the injector. The Reynolds number in the main injector is approximately 100,000
in these computations. Figure 13 shows a schematic of the grid and contours of the
velocity field. Two grids were generated: coarse (2.2M elements) and fine (4.5M elements).
Simulations on the coarse grid have been performed, and used to initialize the fine grid
computation which is underway. Statistics are being gathered on the fine grid at the time
of writing. The mean pressure drop across the injector has converged, and shows very
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FIGURE 12. Instantaneous snapshot of particles superposed on velocity contours in PW6000
combustor geometry.

good agreement with experiment (4588 Pa as compared to 4500 Pa). In contrast, a RANS
computation was performed on the same grid and found to yield a much higher drop of
5660 Pa. More detailed comparison will be performed once all quantities are converged.

6. Summary and future plans

Our progress in the last year is as follows:

¢ A new formulation was derived that is discretely energy-conserving for arbitrary
grids. This was found essential for performing simulations at high Reynolds number
simulations, and on the ‘bad’ grids found in complex geometries such as the Pratt &
Whitney combustor.

e Turbulent validations were performed for the swirling flow in a coaxial combustor
geometry, flow over a cylinder and turbulent channel flow.

e Turbulent simulations were initiated in the complex Pratt & Whitney combustor.
Also, simulations were performed in a test rig geometry used by Pratt & Whitney for
which experimental data is available.

e A spray module was integrated with the gas-phase solver. Validation simulations in
a swiring coaxial combustor geometry Sommerfeld & Qiu (1991) were performed. Spray
simulations in the Pratt & Whitney combustor were initiated.

Our plans for the next year are as follows:

e Complete validation in the front-end model.

e Complete validated simulations, including transpiration and secondary flows, in the
PW6000 geometry.

e Perform reacting flow simulations in the PW6000 geometry.

e Extend the spray models to include droplet evaporation and spray-sheet break-up.
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FIGURE 13. Illustration of the front-end validation model geometry, the grid, and
instantaneous contours of streamwise velocity.
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Consistent boundary conditions for integrated
LES/RANS simulations: LES outflow conditions

By J. U. Schliiter and H. Pitsch

1. Motivation

Numerical simulations of complex large-scale flow systems must capture a variety of
physical phenomena in order to predict the flow accurately. Currently, many flow solvers
are specialized to simulate one part of a flow system effectively, but are either inadequate
or too expensive to be applied to a generic problem.

As an example, the flow through a gas turbine can be considered. In the compressor
and the turbine section, the flow solver has to be able to handle the moving blades,
model the wall turbulence, and predict the pressure and density distribution properly.
This can be done by a flow solver based on the Reynolds-Averaged Navier-Stokes (RANS)
approach. On the other hand, the flow in the combustion chamber is governed by large
scale turbulence, chemical reactions, and the presence of fuel spray. Experience shows
that these phenomena require an unsteady approach (Veynante & Poinsot, 1996). Hence,
the use of a Large-Eddy Simulation (LES) flow solver is desirable.

While many design problems of a single flow passage can be addressed by separate
computations, only the simultaneous computation of all parts can guarantee the proper
prediction of multi-component phenomena, such as compressor/combustor instability and
combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full
aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the
compressor sections, an LES flow solver for the combustor, and again a RANS flow solver
for the turbine section (Fig. 1).

2. Interface Treatment

The simultaneous computation of the flow in all parts of a gas turbine with different
flow solvers requires an exchange of information at the interfaces of the computational
domains of each part. The necessity for information exchange in the flow direction from
the upstream to the downstream flow solver is self-explanatory: the flow in a passage
is strongly dependent on mass flux, velocity vectors, and temperature at the inlet of
the domain. However, since the Navier-Stokes equations are elliptic in subsonic flow, the
downstream flow conditions can have a substantial influence on the upstream flow devel-
opment. This can easily be imagined by considering that, for instance, a flow blockage
in the turbine section of the gas turbine can affect and even stop the flow through the
entire engine. This means that the information exchange at each interface has to go in
both, downstream and upstream, directions.

Considering an LES flow solver computing the flow in the combustor, information on
the flow field has to be provided to the RANS flow solver computing the turbine as
well as to the RANS flow solver computing the compressor, while at the same time, the
LES solver has to obtain flow information from both RANS flow solvers (Fig. 2). The
coupling can be done using overlapping computational domains for the LES and RANS
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FIGURE 1. Gas turbine engine

simulations. For the example of the combustor/turbine interface this would imply that
inflow conditions for RANS will be determined from the LES solution at the beginning
of the overlap region, and correspondingly the outflow conditions for LES are determined
from the RANS solution inside the overlap region.

However, the different mathematical approaches of the different flow solvers make
the coupling of the flow solvers challenging. Since LES resolves large-scale turbulence
in space and time, the time step between two iterations is relatively small. RANS flow
solvers average all turbulent motions over time and predict ensemble averages of the
flow. Even when a so-called unsteady RANS approach is used, the time step used by the
RANS flow solver is still much larger than that for an LES flow solver.

The specification of boundary conditions for RANS from LES data is relatively straight-
forward. The LES data can be averaged over time and used as boundary condition for
the RANS solver. The problem of specifying inflow conditions for LES from upstream
RANS data is similar to specifying LES inflow conditions from experimental data, which
is usually given in time averaged form, and has therefore been investigated in some detail.
A method that has been successfully applied in the past, is, for instance, to generate a
time-dependent database for inflow velocity profiles by performing a separate LES sim-
ulation, in which virtual body forces are applied to achieve the required time-averaged
solution (Pierce & Moin, 1998b).

In the present study the remaining flux of information from a downstream RANS
computation to an upstream LES computation is investigated. LES computations have
already shown that the flow can be sensitive to the outflow conditions (Moin, 1997,
Pierce & Moin, 1998a). The outflow conditions for LES have to be specified such that
the time-averaged mean values of all computed quantities match the RANS solution at
a given plane, but the instantaneous solution at the outflow still preserves the turbulent
fluctuations.
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FIGURE 2. Gas turbine combustor with interfaces

3. Formulation of the outflow boundary treatment

Modern LES flow solvers are often based on a low-Mach-number formulation. With
this approximation, acoustic pressure fluctuations are neglected and the hydrodynamic
pressure variations are determined by a Poisson equation. This formulation makes it
impossible to prescribe the pressure at the outlet of the LES domain directly. Instead,
only the velocities or their derivatives can be specified as boundary conditions in the LES
flow solver, and the pressure adjusts accordingly. The mean velocity profiles are enforced
by adding a virtual body force to the right-hand side of the momentum equations inside
the overlap region of the computational domains of the LES and the RANS flow solver.
For a constant-density flow which is stationary in the mean, the body force is given by

Fi(z) = %(m,ms (@) = Tims (). (3.1)

where 4; nans is the vector of target velocities obtained from the RANS computation and
i 1es is the vector of time-averaged velocities from the LES computation. The forcing
time scale 7 can, to first order, be determined from the bulk velocity up and the length
of the forcing region lr as 77 = lp/up. Experience shows that the forcing time is usually
much lower than this estimate, so that this can serve as an upper limit. For numerical
purposes a convective boundary condition is applied at the outlet plane of the LES
domain. '

The forcing term in Eq. (3.1) involves only mean velocities, while the corresponding
momentum equation is solved for the instantaneous velocities. Thus the mean velocities
from the LES simulation are corrected without attenuating the resolved turbulent fluc-
tuations. It will be shown later that, to achieve this goal, the averaging time for @; ves
needs to be longer than the characteristic times of the turbulence. Equation (3.1) also
shows that the forcing term tends to zero if the actual mean velocity from the LES
approaches the target velocity, which is a consistency requirement. Note also that the
RANS velocities are prescribed not only in one plane, but in the entire overlap region.
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4. LES Flow Solver

For the current investigation, the LES flow solver developed at the Center for Turbu-
lence Research (Pierce & Moin, 1998a) has been used. The flow solver solves the filtered
momentum equations with a low-Mach-number assumption on an axisymmetric struc-
tured mesh. A second-order finite-volume scheme on a staggered grid is used (Akselvoll
& Moin, 1996).

The subgrid stresses are approximated with an eddy-viscosity approach. The eddy
viscosity is determined by a dynamic procedure (Germano et al, 1991; Moin et al, 1991).

5. Numerical experiment: pipe-flow geometry

In order to prove the feasibility and the well-posedness of this approach a pipe flow
has been computed (Fig. 3). The pipe has a length of five times the diameter D and the
virtual body force is applied in a volume of length 2.5 D at the end of the pipe flow. The
mesh consists of 128 x32x64 cells.

As a first step, a laminar pipe flow at a Reynolds number Re=1000 is considered. Fig.
4 shows the resulting velocity profiles. The solid line shows the parabolic inlet profile
corresponding to the solution of a fully-developed pipe flow. Without forcing, this would
be the solution at any downstream location in the pipe. The circles denote an arbitrarily-
chosen velocity profile, with the same mass flow rate as the inlet profile, which is to be
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matched at the outlet. The dash-dotted line is a profile just upstream of the forcing
region. The profile is different from the inflow solution, indicating that forcing influences
the flow field even upstream of the forcing region. After applying the virtual body force,
the computed velocity profile quickly converges towards the imposed velocity profile.
An important test for consistency and well-posedness is the enforcement of a velocity
profile which does not conserve mass. The exchange of the velocity profiles between RANS
and LES flow solver may introduce numerical errors, especially due to the interpolation
between two different meshes, which could accumulate over time. In order to investigate
the behavior of the proposed LES outflow conditions when encountering this problem,
an additional computation was made, where a “non-conservative” velocity profile, with
a different mass flow rate, was enforced. Fig. 5 shows the resulting velocity profiles. The
squares denote the imposed velocity profile, which clearly underestimates the mass fiux.
However, the computed velocity profile at the end of the forcing region has the same
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mass flux as the inlet profile. This shows that the method is robust against inaccuracies
resulting from the exchange of velocity profiles.

The next test case considered here is a turbulent pipe flow at a Reynolds number Re
= 15000. Applying the proposed correction of the LES outflow by virtual body forces
to this problem leads to the question of how to define the mean value i,z Of the LES
computation. Several approaches have been tested:

(@) Using the actual velocity @yes = u(t). This results in a strong damping of turbulent
fluctuations, since fluctuations of the velocity obviously lead to a counteracting virtual
body force.

¢
(b) Using the overall mean value @ies = 7= [ @dt. This ensures the least interference

to
with turbulent fluctuations, but does not allow for unsteadiness in the mean profiles.
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1
(¢) Averaging over a trailing time window Uigs = A [ udt. Here it has to be
t—At
ensured that At is long enough to average the turbulent fluctuations, but short enough
to allow for unsteadiness of the mean profiles.

All approaches result in the same mean velocity field (Fig. 6). Since the turbulent
velocity profile is already closer to the imposed profile than in the laminar case, the flow
field converges faster towards the imposed profile. However, there are some remarkable
differences in the turbulent fluctuations.

Fig. 7 shows the profiles of the axial velocity fluctuations for different averaging time-
spans. Using approach (a) results in complete attenuation of the turbulence. Assuming
that an overall mean value (approach (b)) preserves the turbulence, it can be seen that
the averaging time has to be sufficiently long to prevent attenuation of the turbulence.
Here, averaging over one non-dimensional time unit, given by the ratio of pipe diameter to
bulk velocity, was found to be sufficient. This seems reasonable, since the abovementioned
criteria require the averaging time to be of the order of the Eulerian integral time scale
of the turbulence, which for a turbulent pipe flow is proportional to the ratio of pipe
diameter to bulk velocity.

For a swirling flow the same procedure can also applied to the azimuthal velocity
component. Fig. 8 shows the profiles of the azimuthal velocity component. Again, the
inflow conditions correspond to a fully-developed turbulent pipe without swirl and the
virtual body force is applied as shown in Fig. 3. At the end of the forcing region the
target profile is matched perfectly.

The results of the pipe-flow investigation demonstrate that the proposed treatment of
the LES outflow conditions with virtual body forces can be used to enforce a mean flow
solution at the LES outflow, and that the enforced outflow conditions can indeed alter
the upstream flow field.

6. Validation: swirl combustor geometry

In order to validate the proposed method for treating LES outflow conditions for an
LES/RANS interface, the method will be applied to a more complex configuration. The
test case chosen is that of a swirling flow inside a combustor geometry with a swirl
number, S = 0.38, with S defined as:

! JFr2a,apdr

S =
R fOR ra2 dr

(6.1)

where u, is the axial velocity component, uy the azimuthal velocity component, and R
the radius of the nozzle. This swirl number has been chosen because it is slightly above
the critical limit at which a central recirculation zone develops, where the flow is believed
to be most sensitive to outer influences such as the outflow boundary conditions (Gupta
et al, 1984; Dellenback et al, 1988). Swirl flows are dominated by large-scale turbulence
making these flows a field of application of LES par ezcellence. LES usually achieves high
levels of accuracy in predicting swirl flows (Pierce & Moin, 1998a; Schiiiter et al., 2001).
In order to demonstrate the importance of LES outflow conditions and to prove the
ability of the proposed LES outflow treatment with virtual body forces to prescribe
outfiow conditions correctly, three different outflow geometries have been considered:
(a) a swirl flow with a contraction near the outlet at z/D = 3.0 (Fig. 9);
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(b) a swirl flow where the computational domain is cut off just upstream of the con-
traction of case (a) at z/D = 2.75 (Fig. 10);

(c) the same geometry as in case (b), but with the proposed boundary condition applied
in order to simulate the effect of the contraction (Fig. 11).

The mesh size of geometry (a) consists of 384x64x64 cells while the mesh of cases (b)
and c) consists of 256x64x64 cells. The point distribution of both meshes is the same,
except for the contraction itself.

Case (a) will be considered as the reference case. Since the computational domain
includes the contraction, its influence on the upstream flow will be correctly reflected in
the LES solution. Assuming that the contraction is to be computed with a RANS code,
in case (b) the computational domain has been reduced and the contraction is outside of
the LES domain. Hence, its influence on the LES flow field is neglected in case (b).

Fig. 12 shows the mean velocity profiles in cases (a) and (b). It can be seen, that
the velocity profiles of the computation with the reduced geometry (b) (dashed line)
differ from the profiles of the computation of the full geometry (a) (solid line). Hence,
it is apparent that the downstream geometry variation has a substantial influence on
the entire domain, and that geometry (b) cannot be used to approximate the flow in
geometry (a) without special boundary treatment.

In order to take the contraction outside of the computational domain into account,
the proposed outflow boundary treatment is employed. The Reynolds-averaged velocity
profiles from z/D = 2.0 — 2.5 from the LES computation of case (a) are imposed, with
virtual body forces, on the reduced geometry. Fig. 12 shows the mean velocity profiles
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dashed lines: reduced geometry without virtual body force(case (b)); symbols: reduced geometry
with virtual body force (case (c))

of case (c) (black dots). It can be seen that not only do the velocity profiles inside the
virtual-body-force volume adjust, but so also do the velocity profiles upstream. The LES
computation of the reduced geometry with the virtual body force delivers essentially the
same prediction as the computation of the entire geometry.

The influence of the LES outflow condition on the velocity fluctuations is shown in Fig.
13. The different mean-velocity distribution due to the presence of a contraction results
in a different turbulence distribution (compare solid line and dashed line in Fig. 13).
The employment of the virtual body forces corrects not only the mean velocity field, but
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also the turbulent quantities (compare solid line and filled circles in Fig. 13). The virtual
body force results in an adjustment of the turbulent quantities so that the flow upstream
of the body force volume is nearly indistinguishable from the complete computation with
the contraction.

In Fig. 14, the axial pressure distribution on the axis is shown. Due to the variances
in the flow fields of the cases (a) and (b), especially in the extend and strength of
the recirculation zone, the pressure distributions differ. Although the proposed outflow
boundary adjustment by virtual body forces acts only on the velocity components and not
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FIGURE 14. Axial pressure distribution on the axis; solid lines: contraction (case (a)); dashed
lines: reduced geometry without virtual body force (case (b)); symbols: reduced geometry with
virtual body force (case (c))

on the pressure itself, the pressure distribution adjusts to the modified outflow conditions.
The pressure distributions in cases (a) and (c) are in agreement upstream of the body-
force volume.

7. Conclusions

The results of this study show that the outflow conditions may have a major impact on
the accuracy of LES computations. Hence, a proper description of the outflow conditions
is mandatory.

To avoid the computation of the downstream geometry with LES a method has been
proposed to correct the outflow conditions. This method ensures the adjustment of the
LES flow field to the statistical data computed by a downstream RANS flow solver.

The adjustment of the LES outflow has an effect throughout the entire flow-field. The
resulting prediction of the flow-field is nearly indistinguishable from an LES computation
of the entire domain. This allows a drastic decrease in computational costs.

Future efforts will combine the LES flow solver with an actual RANS flow solver in a
two-way-coupled LES/RANS simulations.
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Explicit filtering and subgrid-scale models in
turbulent channel flow

By Jessica Gullbrand

1. Motivation and objectives

In large eddy simulation (LES), the large energy carrying length scales of turbulence
are resolved and the small structures are modeled. The separation of large and small
scales is done by applying a low-pass filter to the Navier-Stokes equations. The effect of
the small-scale turbulence on the resolved scales is modeled using a subgrid-scale (SGS)
model.

It is of great importance that the resolved length scales are captured accurately by the
numerical scheme. Information from the smallest resolved length scales are commonly
used to model the stresses of the unresolved scales in the SGS model. This requires that
the numerical error of the scheme is sufficiently small. Therefore, high order numerical
schemes are necessary in LES.

One approach is to use high-order finite-difference schemes. However, all finite-difference
schemes have a truncation error that increases with the wavenumber (Lund & Kaltenbach
1995). To reduce the influence of this error, an explicit filtering can be applied that re-
duces or removes the small scales that otherwise would be largely affected by this error.

In using explicit filtering, it is a requirement that the filtering operation and the dif-
ferentiation do commute. This is generally not the case in inhomogeneous flow fields
where the required smallest resolved length scales vary throughout the flow fields. The
varying filter width introduces a commutation error of O(A?) where A represents the
filter width (Ghosal 1996; Ghosal & Moin 1995). Therefore, most of the explicit filtering
procedures that have been applied so far have been used in homogeneous flow fields or
in homogeneous directions of more general flows. Explicit filtering in two dimensions has
been studied by Lund & Kaltenbach (1995) and numerous filter functions by Piomelli
et al. (1988) and Najjar & Tafti (1996).

The problem of lacking robust and straightforward filtering procedures that do com-
mute was addressed by Vasilyev et al. (1998). They developed a general theory of discrete
filtering for LES in complex geometries. A set of rules for constructing discrete filters, so
that the filters commute to the desired order, was also proposed.

The ultimate goal of the explicit filtering procedure is to perform a “true” LES. In a
true LES, the filtering procedure is decoupled from the computational grid. As the grid is
refined while the explicit filter width is held fixed, the solution converges to a true LES.
In the commonly-used approach to LES, the computational grid together with the low
pass characteristics of the discrete differencing operators act as a filter and, as the grid
is refined, the solution converges towards a direct numerical simulation (DNS) not an
LES. However, before a true LES can be performed, the influence of the explicit filtering
procedure on the SGS models need to be determined.

In this paper, explicit filtering is applied in three d1mens1ons in a turbulent channel]
flow using the dynamic Smagorinsky model (DSM) (Germano et al. 1991) and the mixed
model (MM) (Bardina et al. 1980; Zang et al. 1993) as SGS models. The turbulent
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channel flow of Reynolds number Re, = 395 is simulated using a conservative fourth-
order finite-difference scheme (Vasilyev 2000). The influence of the three-dimensional
filtering procedure on the DSM and the MM is investigated, as well as the influence of
resolving the Leonard stress tensor. The results are compared to the DNS data by Moser
et al. (1999).

2. Numerical method
2.1. Governing equations

In LES, the governing equations are filtered in space. The filter function G is applied to
the flow variable f :

Flz, A1) = /jo G(z,z',A) f(z', t)dz’ (2.1)

where A is the filter width.
The governing equations for incompressible flows are the filtered continuity and Navier-
Stokes equations

== (2.2)

?_.E_i.}.aﬁiﬁj =._.a£+_l_@_% (2.3)
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where u; denotes velocity vector and z; the space coordinates. Re, is the Reynolds

number, ¢ is time, and p is pressure. The SGS stress tensor is defined as 7;; = Wa; —U;T;.

The equations are normalized with the friction velocity u, and the channel half width A.
The product %;%; generates wavenumbers that cause aliasing errors and therefore an

alternative to the above filtered Navier-Stokes equations is

&u; Ouwm; _ 9p 1 & Omy
Bt T oz; ~ bn | Re 02 Ou; 24)

where 7;; is the SGS stress tensor defined as 7;; = U;u; - 7%;u;. By explicitly filtering the
non-linear terms, the wavenumber content of these terms is controlled (Lund 1997). In
Eq. (2.4), all the terms of the Navier-Stokes equations contain the same wavenumbers.
The stress tensors 7;; and 7;; describe the interaction between the large resolved Grid
Scale (GS) and the small unresolved SGS. The stress tensors do not contain the same
terms. If decomposition is applied to the velocity correlation T;, 7;; can be written as
the sum of the Leonard stresses, L;;, the cross stresses, C;;, and the Reynolds stresses,
R;j, as 1;j = Lij + Cij + Ri; (Clark et al. 1979). The expressions for the stresses are

L= UU; — UiU;

- 77 127
Ci; =u'; + uju,

JE—
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where u} is the velocity fluctuation. The expliclit filtering of the convective terms in
Eq. (2.4) results in a different expression of the SGS stress 7;;. The interaction between
the resolved scales, the Leonard stresses, is implicitly included in the convective terms.
The stress tensor is described as the sum of the cross stresses and Reynolds stresses,
i; = Cij + Rij. The SGS stress tensors cannot be expressed in the resolved flow field
variables and therefore, they have to be modeled.

2.2. Subgrid-scale models

Two widely-used SGS models are the scale similarity model (SSM) proposed by Bardina
et al. (1980) and the DSM by Germano et al. (1991). It has been shown that the SSM
does not dissipate enough energy and it is therefore most commonly used in a linear
combination with a more-dissipative model such as the Smagorinsky model (Smagorinsky
1963) to form the MM. The model parameter in the Smagorinsky model can be either
constant or calculated dynamically during the entire simulation. This is also the case
when the Smagorinsky model is used in the MM. Bardina et al. (1980) used a constant
model parameter while Zang et al. (1993) applied the dynamic approach. Both the SSM
and the dynamic procedure of the DSM use the assumption that the behavior of the
resolved and unresolved stresses is similar.

In the present investigation, 7;; is modeled using the DSM while 7;; is modeled using
either the DSM or the MM. The DSM models the Reynolds stresses in the SGS stress
tensors. The influence of the Leonard stresses in ;; is investigated. For 7n;;, the cross
stresses are modeled by the SSM (C;; = W; — %;u;) in the MM. By using the SSM,
the possible drawback of Eq. (2.4) not being Galilean invariant is solved (Speziale 1985).
An explicit filtering of n;; is performed to ensure that the SGS terms contain only the
desired wavenumbers. The model parameter in the DSM is calculated dynamically in all
the simulations. The parameter is averaged in the homogeneous directions and calculated
by the least square approximation by Lilly (1992).

3. Explicit filter

A general class of commutative discrete filters applied to nonuniform filter widths was
proposed by Vasilyev et al. (1998). The procedure applies mapping of the nonuniform
grid in physical space onto a uniform grid in computational space where the filtering is
performed. The filters are constructed by applying a number of constraints to the filter
weights to achieve both commutation and an acceptable filter shape. The filter weights
are calculated by forcing the zeroth moment to be one and a number of higher moments .
to be zero. This determines the order of the commutation error. Other constraints can
be added to adjust the filter shape.

In the simulations, two fourth-order commutative filters have been applied: one explicit
filter and one test filter. The explicit filter is used when the convective terms and the SGS
terms are explicitly filtered in Eq. (2.4). The test filter is used as the second filter in the
dynamic procedure when calculating the model parameter in the DSM (Germano et al.
1991). The ratio between the test and the explicit filter widths is A¢est /Aezp = 2. Between
the explicit filter width and the computational cell size, the ratio is Aegp/Agrig = 2.

3.1. Solution algorithm

The space derivatives in the governing equations are discretized using a fourth-order
finite-difference scheme on a staggered grid. The convective terms are discretized in a
skew-symmetric form to ensure conservation of turbulent kinetic energy (Morinishi et al.
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1998; Vasilyev 2000). The equations are solved with the third-order Runge-Kutta scheme
described by Spalart et al. (1991). The diffusion term in the wall normal direction is
treated implicitly with the Crank-Nicolson scheme to ease the constraint on the time step
of the scheme. The splitting method of Dukowicz & Dvinsky (1992) is used to enforce
the solenoidal condition. The resulting discrete Poisson equation for pressure is solved
using a pentadiagonal direct matrix solver in the wall-normal direction and a discrete
Fourier transform in the homogeneous/periodic directions. Periodic boundary conditions
are applied in the streamwise and spanwise directions, while no-slip conditions are applied
at the walls. A fixed mean pressure gradient is used in the streamwise direction. An
evaluation of the fourth-order conservative scheme is reported in Gullbrand (2000).

4. Turbulent channel flow simulations

The Reynolds number is Re, = 395 and the computational domain is (27h, 2h, wh)
in (z,y,z), where z is the streamwise direction, y the wall normal direction, and z
the spanwise direction. Two grid resolutions are used: a standard grid (36,37,36) and
a fine grid (72,73,72). The computational grid is stretched in the wall normal direction
by a hyperbolic tangent function (Vasilyev 2000). For the standard grid resolution, the
streamwise grid size is Az = 69, the spanwise grid size Az = 34, and in the wall normal
direction the grid size varies between 0.5 < Ay™ < 56. For the fine grid resolution, the
values are Azt = 34, Azt = 17,and 0.25 < Ay™ < 30. A statistically stationary solution
is obtained after 60 dimensionless time units and thereafter statistics are sampled during
30 time units. The time is normalized with the friction velocity and the channel half
width.

5. Results

The results from using commutative explicit filtering in LES using the DSM and the
MM are compared to the DNS data by Moser et al. (1999) for mean velocity, velocity
fluctuations and energy spectra. The explicit filtering enters only into the equations
through the calculation of the model parameter in the DSM, the second filtering of the
velocity field used in the MM, and through the explicit filtering of the convective terms
and SGS tensor in Eg. (2.4).

5.1. Mean velocities

The mean velocity profile predicted by using the explicit filtering and the DSM is overes-
timated in the log-law region when compared to the DNS data. The results are somewhat
surprising, because the DSM is known to perform better (Gullbrand 2000). However, the
model has not previously been applied in turbulent channel flow where three dimensional
filtering is employed. The overestimation is not a result of the three dimensionality of the
filter. This is shown in Fig. 1. When filtering only in the homogeneous directions is used,
the overestimation in the log-law region increases. The overestimation is not an artifact
of the relatively coarse resolution either. The fine grid resolution improves the results
slightly, but the improvement is not good enough to explained the model behavior.

The explicit filtering of the convective terms and the SGS stress tensor in Eq. (2.4)
show only a small influence on the results (Fig. 2). However, the slope in the log-law
region is incorrect when explicit filtering are not performed of the previously mentioned
terms. Eq. (2.4) produces the correct slope when using the DSM while Eq. (2.3) does
not.
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FIGURE 1. Mean velocity profile U as a function of the distance to the wall y*. o: DNS, —:
Eq. (2.4) with 7;; = DSM, -—~~- : Eq. (2.4) with 7;; = DSM fine grid, and - - -: Eq. (2.4) with
75; = DSM xz-filter.
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The mean velocity profile improves when the MM is used instead of only the DSM in
Eq. (2.4). However, the MM also overestimates the log-law region compared to the DNS
data. The overestimation using the MM is about 7 % at the center of the channel while
it is 13 % for the DSM. This is shown in Fig. 3.

5.2. Velocity fluctuations

The streamwise velocity fluctuation is overpredicted, while the wall normal and span-
wise fluctuations are underpredicted when using explicit commutative filters on both the
standard and fine computational grids. The difference between the LES and the DNS
results is even larger when two dimensional filtering is applied. The predicted peak value
in the streamwise direction is reduced on the finer grid (Fig. 4). Usually, the same trend
with overprediction of the streamwise fluctuation and underprediction of the other two
fluctuations is observed in the commonly used LES approach (Gullbrand 2000).

The velocity fluctuations using Eq. (2.4) are better predicted when compared to Eq.
(2.3). The both equations predict equally high peak of the streamwise velocity fluctuation,
but the wall normal and spanwise fluctuations are better captured by Eq. (2.4). This is
shown in Fig. 5. :

A lower peak value of the streamwise velocity fluctuation is predicted when the MM
is compared to the DSM. Both results are calculated using Eq. 2.4. The MM results in
an overprediction of the peak value of 16 % while it is 40 % for DSM. The wall normal
and the spanwise fluctuations are better predicted with the DSM than the MM (Fig. 6).

5.3. Energy spectra

The resolved wavenumbers for the standard grid resolution and the fine grid can be
seen in Fig. 7, where the energy spectra for each velocity correlation are shown as a
function of the streamwise wavenumber. The increased resolution results in resolving
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FIGURE 4. Velocity fluctuations in streamwise |u'|, wall normal || and spanwise |w'| direction
as a function of the distance to the wall y*. o: DNS, : Eq. (2.4) with 7;; = DSM, —=—~ :

Eq. (2.4) with 7;; = DSM fine grid, and - - -: Eq. (2.4) with 7;; = DSM xz-filter.
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FIGURE 5. Velocity fluctuations in streamwise |u'|, wall normal |v'| and spanwise |w'| direction
as a function of the distance to the wall y*. o: DNS, : Eq. (2.4) with 7;; = DSM, and
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FIGURE 6. Velocity fluctuations in streamwise |«'|, wall normal |v'| and spanwise |w'| direction
as a function of the distance to the wall y*. o: DNS, : Eq. (2.4) with ;; = DSM, and

higher wavenumbers. The filtering procedure in only the homogeneous directions does
not include as broad spectra of resolved wavenumbers compared to filtering in all three
dimensions. The fine grid resolution shows better resolution of the small wavenumbers
when compared to the DNS results than the standard grid simulations do.

The energy spectra are different for using the DSM in Eq. (2.4) or in Eq. (2.3). Eq.
(2.4) results in a higher energy content of the small wavenumbers, while the energy decays
also in the small wavenumbers when Eq. (2.3) is employed (Fig. 8).

The MM captures the small wavenumbers better than the DSM. The MM also results
in a small increase of the resolved wavenumbers. This is shown in Fig. 9.

The influence of the finite difference scheme on the wavenumbers is clearly seen in
the figures. The steep slope at high wavenumbers is due to the modified wavenumber
argument (Lund & Kaltenbach 1995).

6. Discussion and conclusions

Three dimensional explicit filtering in LES has been used for the DSM and the MM in
turbulent channel flow. The simulations were performed using fourth order conservative
finite difference schemes. The three dimensional explicit filter functions commute up to
fourth order. The result of performing LES using the commutative filters is that the
mean velocity profile is overestimated in the log-law region. The overestimation is not a
result of the introduction of filtering in the wall normal direction. According to Fig. 1,
the overestimation becomes even larger when filtering is applied only in the homogeneous
directions.

The two formulations of the Navier-Stokes equations, Eq. (2.3) and Eq. (2.4), predict
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FIGURE 7. Energy spectrum of the streamwise E., wall normal E,, and spanwise Ey velocity
correlation as a function of the streamwise wavenumber k; at y™ ~395. o: DNS, : Eq.
(2.4) with 7;; = DSM, ===~ : Eq. (2.4) with 7;; = DSM fine grid, and - - -: Eq. (2.4) with
Nij = DSM xz-filter.
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FIGURE 8. Energy spectrum of the streamwise Ey,, wall normal E,, and spanwise Ew. velocity
correlation as a function of the streamwise wavenumber k. at y* ~395. o: DNS, : Eq.
(2.4) with n;; = DSM, and ---- : Eq. (2.3) with 7;; = DSM.
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FIGURE 9. Energy spectrum of the streamwise Fy., wall normal E,, and spanwise E., velocity
correlation as a function of the streamwise wavenumber k. at y* ~395. o: DNS, : Eq.
(2.4) with 7;; = DSM, and ~~-~ : Eq. (2.4) with n;; = MM.

slightly different results. Eq. (2.4) has the best behavior and also the most consistent
approach, with all the terms in the equation containing the same wavenumbers. This
is achieved by explicitly filtering the convective terms and the SGS stress tensor. By
filtering the convective terms, the Leonard stress term is accounted for in the equation.
The difference in the calculated results between Eq. (2.3) and Eq. (2.4) is due to the
influence of the Leonard stress tensor.

The MM captures the large scale behavior better that the DSM. This result depends
upon the shape of the filter function. Most simulations with the DSM have been per-
formed using the sharp cut-off filter in the homogeneous directions as the test filter.
The developed commutative filters are Gaussian like filters. A study by Piomelli et al.
(1988) showed that for two dimensional filtering, the best results are obtained by using
the Gaussian filter with the MM and the cut-off filter with the Smagorinsky model. The
Gaussian filter used in the Smagorinsky model resulted in an overprediction of the mean
velocity profile in the log-law region. The over-prediction was about 17 % at the center
of the channel for Re, = 180. The findings by Piomelli et al. (1988) are confirmed in
this study in Fig. 10. The commonly used LES approach without explicit filtering has
been performed and two different test filters have been used: the commutative filter and
the sharp cut-off filter. The standard grid resolution was used in the simulations. The
filters are only employed in the homogeneous directions and the filter widths are twice
the computational grid size. The test filters enter into the equations only through the
calculation of the model parameter in the DSM. The mean velocity profiles are shown in
Fig. 10. The velocity profile is highly overpredicted in the log-law region when using the
commutative filter when compared to the results from using the sharp cut-off filter.

The contribution from the SGS model is increased in the explicitly filtered LES com-
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pared to the commonly used LES approach. The increase is expected, due to a reduction
or an elimination of the high wavenumbers by the filtering procedure, causing the SGS
model to model a larger range of wavenumbers. Therefore, the SGS model has a larger
influence in the explicitly filtered LES.

7. Current work

In the current work, the true LES approach is investigated. The true LES is obtained
by keeping the explicit filter width constant while the computational grid is refined. The
solution converges to a true LES.

Different SGS models will also be investigated as well as the numerical error in the
simulation. Two promising SGS models that have proven to perform well are the multi-
scale model by Hughes et al. (2001) and the approximate deconvolution model by Stolz
et al. (2001). The LES of turbulent channel flow in both papers have been performed
using spectral methods. The models will be applied in the previously discussed fourth
order finite difference code.
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Prediction of high Reynolds number flow over a
circular cylinder using LES with wall modeling

By Meng Wang, Pietro Catalano {, AND Gianluca Iaccarino

1. Motivation and objectives

The objective of this work is to assess the viability and accuracy of large-eddy simula-
tion (LES) with wall modeling for high Reynolds number complex wall-bounded flows. It
is well known that the conventional LES is extremely expensive at high Reynolds numbers

due to the need to resolve the small but dynamically-important near-wall flow structures. '

As a practical alternative, LES can be coupled with a wall model which models these
near-wall effects and provides the LES with a set of approximate boundary conditions,
often in the form of wall shear stress (Cabot & Moin 2000).

In recent years, wall models based on turbulent boundary layer (TBL) equations and
their simplified forms (Balaras, Benocci & Piomelli 1996; Cabot & Moin 2000) have
received much attention. These models, used with a Reynolds-averaged Navier-Stokes
(RANS) type of eddy viscosity, have shown promise for complex-flow predictions. For
instance, Wang & Moin (2001) employed this approach to simulate the flow past the
asymmetric trailing edge of an airfoil at chord Reynolds number of 2.15 x 10%, and
obtained very good agreement with solutions from the full LES (Wang & Moin 2000) at
a small fraction of the computational cost.

The flow around a circular cylinder represents a canonical problem for validating new
approaches in computational fluid dynamics. It is therefore reasonable or even necessary
to subject the hybrid LES/wall-modeling methodology to the same “grand challenge”.
To take the best advantage of wall modeling, we concentrate on the super-critical flow
regime in which the boundary layer on the cylinder becomes turbulent prior to separation.
This is, to our knowledge, the first such attempt using LES, although a related method
known as detached-eddy simulation (DES), in which the entire attached boundary layer is
modeled, has been tested in this type of flow (Travin et al. 1999). Breuer (2000) recently
conducted an LES study at a high sub-critical Reynolds number of Rep = 1.4 X 10%,
and showed fairly good comparison with experimental data in the near wake. In the
present work, three simulations, at Rep = 5 x 10°, 1 x 108, and 2 x 10%, have been
performed. Preliminary results and comparisons with experimental data are summarized
in this article. ’

2. Numerical method and procedure

The same LES code and wall model implementation as used by Wang & Moin (2001)
are used for the present calculations. The energy-conservative numerical scheme is of
hybrid finite-difference/spectral type, written for a C-mesh (Mittal & Moin 1997). The
time advancement is achieved by the fractional-step method, in combination with the
Crank-Nicolson method for viscous terms and third-order Runge-Kutta scheme for con-
vective terms. A multi-grid iterative procedure is used to solve the Poisson equation for
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pressure. The subgrid-scale stress (SGS) tensor is modeled using the dynamic SGS model
(Germano et al. 1991; Lilly 1992).

The computational domain has a spanwise size of 2D (D = cylinder diameter), over
which the flow is assumed periodic and 48 grid points are distributed uniformly. In the
planes perpendicular to the span, 401 x 120 grid points are used in the C-mesh, extending
approximately 22D upstream of the cylinder, 17D downstream of the cylinder, and 24D
into the far-field. Potential-flow solutions are imposed as boundary conditions in the far-
field, and convective boundary conditions are used at the outflow boundary. Running at
a maximum CFL number of 1.5, the non-dimensional time step AtUy, /D typically varies
between 0.0030 and 0.0045. To obtain the results presented here, the simulations have
advanced at least 150 dimensionless time units. The statistics are collected over the last
75 or so time units.

Approximate boundary conditions on the cylinder surface are imposed in terms of wall
shear stress estimated from a wall model of the form
; _10p

_‘2_(,,4.,,)%
Oz, * 8z

= = s 1,.—..1,3 2.1
2 pOz; @D

This is a simpler variant of the TBL equation model (Cabot & Moin 2000) which allows
for easier implementation and lower computational cost. Although Wang & Moin (2001)
have shown that the full TBL equations (with dynamically adjusted 1) give better results
in their trailing-edge flow, the discrepancy may be partly related to a surface curvature
discontinuity which is absent from the cylinder surface. Since the pressure is taken from
the LES at the edge of the wall layer, Eq. (2.1) can be integrated to the wall to obtain
an algebraic model for the wall shear stress components (Wang 1999)

18p [° wyd
Twi = 37— fQL {ua,- - -55“/ __Vy+1; } ) (2:2)
fO v+ P tJo ¢

where us; denotes the tangential velocity components from LES at the first off-wall
velocity nodes, at distance ¢ from the wall. In attached flows these nodes are generally
placed within the lower edge of the logarithmic layer. In the present flow, however, 6+
(in wall units) is found to vary from 0 to 100 depending on the local skin friction. The
2
eddy viscosity is modeled by a damped mixing-length model: v;/v = ky3 (1 —eVe/ A) ,
where y} = y,u,/v is the distance to the wall in wall units, x = 0.4, and 4 = 19.

3. Results and discussion

In Fig. 1, the contours of the vorticity magnitude at a given time instant and span-
wise plane are plotted for Rep = 10%. Large coherent structures are visible in the wake,
but they are not as well organized and periodic as in typical Karmén streets at lower
(sub-critical) and higher (post-critical) Reynolds numbers. Compared to flows at lower
Reynolds number (e.g. Kravchenko & Moin 2000; Breuer 2000), the boundary-layer sep-
aration is much delayed and the wake is narrower, resulting in a much smaller drag coef-
ficient. Note that the rather thick layer seen along the cylinder surface consists mostly of
vorticity contours of small magnitude. These levels are necessary for visualizing the wake
structure, but are not representative of the boundary-layer thickness. The true boundary
layer, with strong vorticity, is extremely thin in the attached region.

A comparison with two sets of experimental data of the mean pressure distribution
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FiGURE 1. Instantaneous vorticity magnitude at a given spanwise cut for flow over a circular
cylinder at Rep = 10°. 25 contour levels from wD/Us = 1 to wD/Usx = 575 (exponential
distribution) are plotted.
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FIGURE 2. Mean pressure distribution on the circular cylinder. Present LES at Rep = 105;
o Experiment of Warschauer & Leene (1971) at Rep = 1.26 x 10° (spanwise averaged); & Ex-
periment of Flachsbart (in Zdravkovich 1997) at Rep = 6.7 x 10°.

on the cylinder surface is depicted in Fig. 2. Very good agreement is observed between
the LES at Rep = 10° and the experiment of Warschauer & Leene (1971) which was
performed at Rep = 1.26x 106. The original C;, data of Warschauer & Leene exhibit some
spanwise variations; for the purpose of comparison the average value is plotted. Relative
to the measurements of Flachsbart (see Zdravkovich 1997) at Rep = 6.7 x 10°, the LES
Cp shows smaller values in the base region. Note that Flachsbart’s data contain a kink
near § = 110°, indicating the presence of a separation bubble. This type of separation
bubble is characteristic of the critical regime, and is difficult to reproduce experimentally
or numerically due to sensitivity to disturbances.

In Table 1, we compare the mean drag coefficient, the base pressure coefficient, and
the Strouhal number from the LES at Rep = 10° with the experimental values. The
agreement with the measurements of Shih et al. (1993) is reasonably good. The LES
somewhat overpredicts the drag coefficient compared with Shih et al. (1993), but under-
predicts it relative to Achenbach (1968) (cf. Fig. 3). The Strouhal number of 0.22 from
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CD —Cp,base St

LES 0.31 0.32 0.28
Exp. (Shih et al. 1993) 0.24 0.33 0.22
Exp. (Others, see Zdravkovich 1997)  0.17-0.40 - 0.18-0.50

TABLE 1. Drag, base pressure coefficient and Strouhal number for the flow around a circular
cylinder at a Reynolds number of 10°.

Shih et al. is for a rough-surface cylinder; no coherent vortex shedding was observed
for smooth cylinders at Rep larger than 4 x 10°. Indeed, it is generally accepted that
periodic vortex shedding does not exist in the super-critical regime of flow over a smooth
cylinder (Zdravkovich 1997). From our simulation, a broad spectral peak of the unsteady
lift centered at St ~ 0.28 is found. It can be argued that although the LES is performed
for a smooth cylinder, the discretization of the cylinder surface and the numerical er-
rors due to under-resolution may act as equivalent surface roughness, causing the flow
field to acquire some rough-cylinder characteristics. The flow at high Reynolds number
is very sensitive to surface roughness and to the level of free-stream turbulence, which
contribute to the wide scatter of Cp and St among various experiments in the literature
(Zdravkovich 1997), listed at the bottom of Table 1. Other factors causing the data scat-
ter include wind-tunnel blockage and end-plate effects. Our simulation results fall easily
within the experimental range. Generally speaking, there is a lack of detailed experimen-
tal data at super-critical Reynolds numbers. In particular, velocity and Reynolds-stress
profile measurements are non-existent, making a more detailed comparison impossible.

To assess the robustness of the computational method, we have performed simulations
at Rep = 5 x 105 and 2 x 108, in addition to the initial attempt at Rep = 1 x 10°.
The predicted mean drag coefficients are plotted in Fig. 3 along with the drag curve
of Achenbach (1968). While the simulations predict Cp rather well at the two lower
Reynolds numbers, the discrepancy becomes large at Rep = 2 x 105. More significantly,
the LES solutions show relative insensitivity to the Reynolds number, in contrast to the
experimental data which exhibit an increase in Cp with Reynolds number after the drag
crisis. Similar Reynolds-number insensitivity has been observed for the other quantities
shown previously. Poor grid resolution, which becomes increasingly severe as the Reynolds
number increases, is the primary suspect.

Finally, the skin-friction coefficients predicted by the wall model in the LES calculations
are plotted in Fig. 4 against the experimental data of Achenbach (1968) at Rep = 3.6 X
108. The levels are very different on the front half of the cylinder, but are in reasonable
agreement on the back half. The boundary-layer separation and the recirculation region
are captured rather well by the LES, indicating that they are not strongly affected by
the upstream errors. The different Reynolds numbers in the LES and the experiment can
account for only a small fraction of the discrepancy. Note that our computed Cy values are
comparable to those reported by Travin et al. (2000) using DES. Travin et al. attribute
the overprediction of Cy before separation to the largely-laminar boundary layer in the
experiment, which has not been modeled adequately in either simulation. Grid resolution
is another potential culprit in the present work. In addition, an overprediction of the skin
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FIGURE 4. Skin friction distribution on the c‘ylinder from LES: Rep =5 x 10%;
~=== Rep =1 x 10% —-— Rep = 2 x 10°. o Experiment of Achenbach (1968) at

Rep = 3.6 x 10°.

friction by the present wall model has also been observed by Wang & Moin (2001) in
the acceleration region of the trailing-edge flow, suggesting that this simplified model
may have difficulty with strong favorable pressure gradients. If this proves to be a major
factor, the more general TBL equation model should provide a better alternative.

4. Concluding remarks

A bold numerical experiment has been carried out to compute the flow around a cir-
* cular cylinder at supercritical Reynolds numbers using LES. The simulation is made
possible by the use of a wall-layer model which alleviates the near-wall grid resolution
requirements. Preliminary results are promising in the sense that they correctly predict
the delayed boundary-layer separation and reduced drag coefficients consistent with mea-
surements after the drag crisis. In quantitative terms, the mean pressure distributions
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and overall drag coefficients are predicted reasonably well at Rep = 5 x 10° and 10°.
However, the computational solutions are inaccurate at higher Reynolds numbers, and
the Reynolds-number dependence of the drag coefficient is not captured.

It must be emphasized that the results presented here are very preliminary. The grid
used near the cylinder surface, particularly before separation, is quite coarse judged by
the need to resolve the outer boundary-layer scales. The effect of the wall model under
coarse grid resolution and in the laminar boundary layer is not clear. Evidently, a more
systematic investigation is needed to separate the grid resolution and wall modeling
effects, and to fully validate the numerical methodology in this challenging flow.
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An experimental and computational inveStigation
| of flow past cacti

By Sharon Talley, Gianluca Iaccarino, Godfrey Mungal AND Nagi N. Mansour

1. Motivation and objectives

This is an interdisciplinary study motivated by the saguaro cactus and other tall ar-
borescent (treelike) succulents that withstand high wind velocities in their natural habi-
tat. These desert plants have a cylindrical shape, modified by complex surface geometry.
Typical diameters are of the order of 0.5 m, and at the highest wind speeds, when the
cactus is in danger of being uprooted, the Reynolds number (Re) can be as large as 108.
Because the shape of an object influences the surrounding airflow, natural selection may
favor body morphologies that reduce forces exerted by wind gusts in their habitat. We hy-
pothesize that the tall cacti morphology of longitudinal cavities and spines may function
to reduce wind forces, including drag and also the fluctuating side-force caused by vortex
shedding. We will address this hypothesis by experiments and numerical simulations.

The evolutionary process of random mutations followed by selection for or against
those mutations is a continual shaping mechanism on organisms. Being products of their
environment, organisms are equipped with adaptations that allow them to cope with
the environmental stresses of their habitat. Longitudinal cavities and spines on succulent
cylindrical plants evolved independently in two plant families: the Cactaceae of North
and South America and the Euphorbiaceae of Southern Africa (Figs. 1a and 1b; Gibson
& Nobel 1986). Thus, distantly related plant species living on different continents but
in habitats with similar abiotic stresses have converged on a common body morphol-
ogy. Convergent evolution to a common body shape provides compelling circumstantial
evidence for the adaptive significance of this morphology in desert environments.

There has been much speculation on the function of cavities and spines on cacti, and
the adaptive significance of the proposed functions is still open to speculation (Geller
& Nobel 1984). Natural selection acts on the random mutations of existing structures
(traits), resulting in improved structures, novel structures, and /or multiple-functionality
of existing structures. Therefore, one function of a trait does not necessarily preclude
other functions, and many traits may contribute to a common function. Given that the
shape of an object affects the flow, it is surprising that no studies have examined how
cavities and spines on desert succulents influence airflow.

Because there are many species of tall arborescent succulents, varying in body size,
depth and number of cavities, and spine arrangement, we will focus on one of the most-
studied of the tall arborescent succulents, the saguaro cactus, Carnegiea gigantea (Fig.
1b, 2, and 3). Saguaros are long-lived and slow to mature. They take 30 to 50 years to
reach reproductive maturity and live up to 150 years of age. Adult saguaros have one
main cylindrical stem ranging from 0.3 to 0.8 m in diameter (Benson 1981) and over 8
to 15 m in height (Hodge, 1991). Ten to 30 v-shaped cavities span the length of the stem
(Hodge 1991). The number of cavities depends on the diameter of the stem, and new
cavities can be added or deleted to maintain a cavity depth ratio (L/D — depth of the
cavity divided by the diameter of the cylinder) of approximately 0.07 & 0.0015 (Geller &
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FIGURE 1. Convergence of the external morphology of desert succulents: (a) Euphorbia sp.
(Euphorbiaceae) from Southern Africa and (b) young saguaro, Carnegiea gigantea (Cactaceae)
from North America.
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FIGURE 2. (a) Addition of cavities (ribs) on an adult saguaro trunk (b) Saguaro forest, and (c)
Root system of a saguaro toppled by the wind.

Nobel 1984; Fig. 2a). Apices of the cavity junctures are adorned with whorls of 15 to 30
spines 2.5 to 7.6 cm long (Benson 1981).

In order for wind to be a selective agent on saguaros, high wind velocities must occur in
saguaro habitats and they must affect their reproductive success. Within the distribution
of saguaros, high wind velocities were recorded 15 m above the ground for a nine-year
period (Bulk 1984). The maximum wind velocity recorded was 38 m/s, (Re = 10°), and
velocities exceeding 22 m/s (Re = 7 x 10°) occurred almost every month. Saguaro habi-
tats contain less vegetation cover than other ecosystems and, consequently, have few if
any other tall plants to shelter them from the wind (Fig. 2b). There is substantial circum-
stantial evidence that wind gusts exert enough force to topple saguaros, and thus, cause
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FIGURE 3. (a) Saguaro stem anatomy (Niklas & Buchman 1994). (b) Sketch of the cross-section

their premature mortality (Fig. 2c; Benson 1981; Alcock 1985; Pierson and Turner 1998),
although information on the wind velocities required to topple large desert succulents is
lacking. The natural-selection scenario would suggest that some saguaros are toppled by
gusts (Fig. 2b), while many others remain standing. Considering that most tall cacti live
for 150 years and take 30 to 50 years or more to reach reproduce maturity, strong gusts
need only occur only every 30 to 50 years to be important in the natural selection of tall
succulent morphology.

Another way stationary organisms can cope with high wind velocities is to increase
their structural strength; however, investment in structural tissues has opportunity costs
(Denny 1994). Saguaros have low investment in the structural tissues of the stem and
even less in the roots. Succulent stems are 90 to 94% water (Gibson and Nobel 1986),
and, therefore, use little structural tissue "wood” to support their massive structures.
Saguaro wood is confined to the center of the stem (xylem fibers; Fig. 3a). The composite
stem tissue has a density specific stiffness (e/p) less than half of that for a solid wood
stem (Niklas and Buchman 1994). The ratio of dry-weight investment in root mass to
stem mass in cacti (0.08 to 0.14) is considerably less than most other plants forms (0.3 to
7.3), suggesting that saguaros invest comparatively little in root structural tissue (Nobel
1994). The saguaro root system is shallow, having a mean root depth of 25 cm and
consisting of thin roots up to 2.5 cm in diameter (Fig. 2¢). Their shallow root system,
which provides poor root anchorage, has been noted to result in saguaro toppling when
exposed to high wind velocities (Hodge 1991). The ability to dampen fluctuating side-
force may also be particularly important in keeping these structures upright because large
fluctuations in forces may break or dislodge roots. Because there are probably constraints
on tissue strength, and evolution occurs by the natural selection of random mutations, it
is conceivable that stationary organisms may evolve shapes that reduce drag and diminish
fluctuating side-force.

At high Reynolds numbers (Re > 104) the drag coefficient (Cy) curves for spheres
and cylinders have four distinct flow ranges, characterized by changes in drag caused
by boundary-layer separation and by transition from laminar to turbulent flow (Fig.
4a; Roshko 1961; Achenbach 1977; Farell 1981). In the subcritical range, Cy is almost
independent of Re (separation is laminar). Then, at the beginning of the critical range,
C; drops rapidly (boundary layer undergoes transition to turbulence). The lowest Cy on
the curve is within the critical range, at what is referred to as the critical Re. The next
range is the supercritical range, where Cy increases with increasing Re and continues to
increase to the fully turbulent transcritical range.
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When comparing Cy curves of uniformly rough and smooth cylinders, rough cylinders
have Cy curves to the left of their smooth analogs and, therefore, experience the critical
range at lower Re (Achenbach 1971). Roughness promotes transition, and, generally, the
greater the roughness the greater the shift of the Cy curve to the left (the degree of surface
roughness is quantified by the parameter /D, the height of the roughness divided by the
diameter of the cylinder). Although a greater degree of uniform surface roughness results
in a lower critical Re, it is accompanied by a smaller drop in Cy and a smaller critical
Re range. In addition, rough cylinders often have higher Cy in the postcritcal regime.

Experimental evidence shows that the shape of the Cy curve depends not only on the
size but also on the shape and distribution of surface roughness. Cylinders with dis-
tributed strips of roughness have been shown to experience early transition without a
rapid rise in Cy in the supercritical range (Fig. 4b; Nakamura and Tomonari 1982). Com-
plex surface roughness, such as dimples on a golf ball (Bearman and Harvey 1976) and
on a cylinder (Bearman and Harvey, 1993), also have a larger Re range of C4 reduction
than cylinders with uniform roughness. Other surface modifications have been studied
to passively reduce drag and fluctuating lift forces on circular cylinders; however, none
have studied spanwise v-shaped cavities with 0.07L/D.

This project addresses fundamental concepts in evolution by examining whether organ-
isms are optimally shaped through natural selection to reduce drag and fluctuating lift.
The fluid mechanics of cacti has not been examined experimentally or numerically. Such
investigation would provide information on how longitudinal cavity depth and complex
surface roughness can affect flow. There are surprisingly few studies on the fluid mechan-
ics of biological organisms, especially terrestrial organisms with bluff bodies. There are
no known bluff organisms that use surface roughness to reduce drag (Vogel 1981). Sur-
face roughness has been argued to be an unlikely adaptation to control drag, because the
reduction in Cy afforded by the surface roughness is accompanied by a dramatic increase
in Cy at higher Re (Denny 1988 and Vogel 1981). However, if the increase in Cy4 occurs
at Reynolds numbers that are rarely if ever experienced by the organism in question, it
should have no effect on the organism’s evolution.

2. Experimental study
2.1. Wind tunnel

Circular cylinders with diameter D of 9.98 cm were manufactured from Ren Shape 460
Modeling board. Five test cylinders are considered: a smooth cylinder, a uniformly rough
cylinder (k/D = 2.5 x 107%), and three cylinders differing in the depth of the vertical
v-shaped cavities (L/D = 0.035, 0.07, and 0.105, see Fig. 3b). Each L/D cylinder had 24
cavities spanning 15°; bits were used to cut angles of 124°, 82.5° and 60° for the 0.035,
0.07, and 0.105 respectively. Roughness on the uniformly rough cylinder was provided
by commercial 36 grit sandpaper (hydrodynamic roughness height, k/D = 2.5 x 1073;
Giiven, Farell and Patel 1980). Sheets of sandpaper were cut and attached to the smooth
cylinder with double-sided adhesive tape, and the thickness added to the cylinder was
less than 2 mm.

Experimental measurements were performed at flow velocities from 13 to 29.5 m/s in
a low-speed blower wind tunnel with a test section 1.18 m x 1.18 m in cross section.
Cylinders were mounted vertically between two endplates attached to the roof and floor,
giving an aspect ratio of 7.06 (h/D) and a geometric blockage (cylinder diameter divided
by the width of the test section) of 13%. The endplates were 8D long by 7D wide, and
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FIGURE 4. (a) Cy curve defining the regimes of flow around a smooth cylinder (Re > 10*) and
(b) Experimental Cq curves of smooth and rough cylinders cylinders. : smooth surface
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FIGURE 5. Smoke flow visualizations at Re =13,000. Fiow is right to left (black line behind the
cylinders is a fracture in the glass).

the distance between the cylinder axis and the leading edge was 3.5D (Szepessy 1994).
The cylinder was rotated about its axis to place the cavities at different orientations to
the flow, and then secured with supports.

Simple visualizations were performed using tufts of yarn attached to the cylinders,
to a wand, and at the wire intersections of a fine framed grid. Flow was documented
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FIGURE 6. Velocity profiles at Re = 125,000 behind cylinders at different spanwise locations.
Location of pitot-static probe from top endplate; L/D = 0.5, —-- 2.3, —-— 3.5, and
-------- 4.7. (a) Velocity profiles behind a smooth cylinder (b) Velocity profiles behind a cylinder
with L/D 0.07.

using a Camcorder (Panasonic PV-L857). Visualization experiments were also carried
out in a low-speed smoke tunnel (Collins model # 300; Collins Radio Co., Cedar Rapids,
Iowa) with a test section 64.3 cm deep, 61 cm high, and 107 cm wide. Vortex streets at
Re of approximately 13,000 were observed in all cases but the cylinder with a L/D of
0.07 (Fig. 5). The symmetric vortex shedding of the 0.07 L/D may be an artifact of the
test cylinders not spanning the entire width of the test section. All test cylinders were
examined in the same way.

Wake velocity profiles were measured with a Pitot-static tube supported by a motorized
traversing mechanism. Profiles were measured at 3.2D behind the cylinder. The Pitot-
static probe was traversed across the test section to a distance of about D from each
wall. A total of 63 points were measured in the wake at a sampling rate 100 Hz for one
minute (6000 samples/point).

2.2. Data analysis

In the Re range from 90,000 to 200,000, the cylinders with cavities and the one with
uniform roughness had narrower wakes, with smaller velocity defect, than the smooth
cylinder. On both counts, this suggests that the cylinders with cavities have a lower Cy
than the smooth cylinder.

Velocity profiles were measured at different locations behind the cylinders to determine
whether the flow was two-dimensional. Behind the smooth cylinder (Fig. 6a) the profiles
are in very good agreement whereas larger discrepancies can be observed behind the
cylinder with cavities (Fig. 6b), suggesting that longitudinal cavities may induce strong
three-dimensional effects. Additional measurements and flow visulaization are required
to clarify this issue.
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FIGURE 7. Example of the computational grids: (a-b) structured grids 241 x 100 elements;
(c-d) unstructured grids = 20, 000 elements (a-c) L/D =0 (b-d) L/D = 0.07
. Lower set of figures is at about 7 times the scale of the upper set.

3. Numerical study
3.1. Numerical method

Preliminary simulations of the flow around a cactus section are carried out by solving
the Navier-Stokes equations in two dimensions. Two codes are used: INS2D (Rogers &
Kwak 1990) and Fluent (Fluent 1999). INS2D is an upwind based, third-order accurate
code for structured (multiblock) grids; the artificial-compressibility approach is used for
pressure-velocity coupling and the time integration is second-order accurate. Fluent is an
unstructured-mesh solver based on second-order-accurate spatial and time discretization;
the SIMPLE technique is used for pressure-velocity coupling. Turbulence modeling is
based on the v? — f model (Durbin 1995; Iaccarino 2001).

3.2. Computational grids

Cylinders with v-shaped cavities (with cavity ranging from L/D = 0.0 to L/D = 0.105)
are considered. Several meshes have been generated to assess the sensitivity of the solu-
tion. In Fig. 7, examples of the grids are shown. Simulations using the structured grids
(Fig. 7a and 7b) have been performed using both Fluent and INS2D. The structured grid
is generated as an O-type mesh wrapped around the cylinder. The cavities are slightly
smoothed to improve the orthogonality of the grid lines at the cylinder surface. The
height of the first cell is adjusted according to Re; the distance from the far field bound-
ary is 25D as used in Rogers & Kwak 1990. The unstructured meshes are generated using
a quadrilateral paving technique (Blacker et al. 1991); this approach allows flexibility in
clustering the grid cells in the wake region and close to the surface.

Table I shows results for the computations performed on different grids at a very low
Reynolds number. The flow is'unsteady and exhibits a periodic vortex shedding from the
cylinder, but only the averaged drag coefficient is reported. Grid independence is achieved
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for the smooth cylinder L/D = 0 using both the structured and the unstructured grids,
and the corresponding values are extremely close.

The results for the flow around the cylinders with cavities show that grid independence
is achieved only using the unstructured grids. An increase in cavity depth requires a
finer resolution to capture accurately the in-cavity flow; in addition, the quality of the
structured grid degrades as the cavity depth increases. It is worth noting that the results
obtained using the finest structured grid (761 x 201) are in good agreement with the
grid-independent results for the unstructured mesh.

In the following Sections only results computed using the unstructured grids are re-
ported.

Grid Elements L/D L/D L/D L/D Elements L/D L/D L/D L/D

0 0.035 0.070 0.105 0 0.035 0.070 0.105

161 x 61 9,600 1.312 1.131 1.172 1.257 6,300 1.267 1.171 1.212 1.255

241 x 101 24,000 1.329 1.269 1.294 1.341 20,000 1.331 1.300 1.301 1.330

481 x 101 40,000 1.339 1.301 1.304 1.326 42,000 1.337 1.307 1.310 1.319

761 x 201 152,000 1.339 1.311 1.313 1.318 76,000 1.338 1.309 1.310 1.317
Structured grids Unstructured grids

Table I. Computed time-averaged Cy for different computational grids — Re = 100

3.3. Laminar simulations

Flow simulations at low Reynolds number (Re = 100 and Re = 200) are carried out
to evaluate the effect of cavity depth (and the accuracy of the predictions) without
uncertainties related to the turbulence modeling. Two-dimensional simulations have been
performed with unstructured grids using 6,000 to 42,000 elements (only the fine mesh
results are presented). The calculations are carried out using a timestep AtU/D = 0.01
(corresponding to approximately 35 time steps per vortex shedding period) and for a
total time of TU/D = 150. The time history of drag and lift coefficients at Re = 100 are
reported in Fig. 8a and 8b respectively. The statistics (time-averaged values, Strouhal
number St etc.) are computed over a period T,y = 50D /U and are reported in Table II:
here C; is the coefficient of fluctuating side force (peak values shown).

L/D Cq C St L/D Cq C St

0 1.339 + 0.010 =+ 0.330 0.160 0 1.365 + 0.037 + 0.664 0.175

0.035 1.304 + 0.011 + 0.325 0.161 0.035 1.361 £+ 0.045 + 0.713 0.172

0.070 1.309 + 0.010 =+ 0.334 0.162 0.070 1.364 £ 0.057 = 0.742 0.172

0.105 1.318 £ 0.012 =+ 0.336 0.161 0.105 1.381 + 0.049 =+ 0.740 0.170
Re =100 Re = 200

Table II. Statistics for low Reynolds number flow around cacti

The results indicate a small drag reduction (< 10%) associated with the presence of
the cavities. The cavity depth L/D = 0.05 is nearly optimal. The change in the unsteady
side-force is also small, showing that the effect of the cavity is limited.
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FIGURE 8. Time history of drag (a) and lift (b) coefficients. Re = 100. —— : L/D = 0;
= 0.07

........ L/D

The results presented for the smooth cylinder at Re = 200 are in good agreement with
the numerical simulations and the experimental data reported in Rogers & Kwak (1990).
It is worth noting that Re = 190 represent the onset of three-dimensional flow in the
wake of the cylinder.

3.4. Turbulent simulations

Calculations at Re = 20,000 and Re = 100,000 (subcritical regime, Fig. 4a) are per-
formed using the v?2 — f turbulence model. The time step, the simulated time and the
averaging time are the same as before; the time history of lift and drag is shown in Fig.
9.

Compared to the results presented at low Re, the drag reduction is now larger (~ 25%).
The strength of the unsteady motion is also greatly reduced, as seen in Table III.

Ca G St Cq C St

L/D

0 1.683 + 0.164 + 1.923 0.217

0.035 1.452 + 0.076 =+ 1.562 0.221

0.070 1.419 £ 0.083 =+ 1.245 0.224
0.105 1.359 £ 0.052 =+ 0.987 0.223

Re = 20,000

L/D

0 1.644 £ 0.113 £ 1.791 0.228
0.035 1.464 & 0.120 + 1.462 0.224
0.070 1.401 + 0.131 + 1.128 0.221
0.105 1.325 & 0.079 =+ 0.864 0.221

Re =100, 000

Table III. Statistics for high Reynolds number flow around cacti
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FIGURE 9. Time history of drag (a) and lift (b) coefficients. Re = 20,000. —— : L/D = 0;
-------- : L/D =0.07

From the results presented in Table III, it appears that the cavity depth has a relatively
strong effect on the drag and a substantial dampening effect on the unsteady motion.

The time averaged turbulent kinetic energy for the four geometries considered is re-
ported in Fig. 10; the intensity very close to the cylinder decreases with the cavity depth,
but higher values are observed in the near wake.

The comparison of the computed C; with the experimental values for the smooth
cylinder (Achenbach 1971) shows an overprediction of about 20%. The flow over the
smooth cylinder in the subcritical regime is characterized by a laminar boundary layer
separation; turbulence is generated in the separated shear layer and is sustained in the
near wake. The smooth cylinder calculations (L/D = 0) are carried out with the v — f
turbulence model switched off for § < 90°. This is necessary, especially at the higher
Reynolds numbers, because turbulence models typically anticipate transition. The sim-
ulations with cavities are carried out with the model switched on from the stagnation
point (f = 0°) because it is expected that transition occurs immediately after the first
cavity. The exact location of transition has an impact on the accuracy of the drag calcu-
lation. In addition, in the subcritical range three-dimensional effects in the real-life wake
are substantial.

Experimental and computed velocity profiles in the wake are compared in Fig. 11.
The results for the smooth cylinder confirm that the calculation overestimate the drag
(corresponding to the larger velocity defect in the wake); on the other hand, the data for
the cylinder with cavities show remarkable agreement. It must be pointed out that the
measurements exhibit three-dimensional effects that are not accounted for in the present
two-dimensional simulations.
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FIGURE 10. Time averaged turbulent kinetic energy: (a) L/D = 0; (b) L/D = 0.035; (c)
L/D =0.070; (d) L/D = 0.105

4. Conclusions and future plans

The preliminary numerical results presented suggest that the v-shaped cavities provide
a damping effect of the fluctuating forces and a drag reduction. Further work is required
to assess the effect of the cavities in the range of Re relevant for the cacti.

4.1. Ezperimental work

Future experiments should focus on obtaining Cy curves over a range of Re from 2 x 10*
(for computational comparisons) to 10® (limit of wind velocities in the saguaro habi-
tat). We will measure drag directly (using a multi-component force transducer - MC3A-
X1000, Advanced Mechanical Technology, Inc, Watertown, MA), the pressure distribu-
tion around the test cylinders (using 16 static ports attached to a scanivalve), and vortex
shedding frequency (using hot-wire anemometry). If there are interesting flow phenom-
ena, the effect of spines on flow around the test cylinders will be evaluated (using 3-D
PIV). Finally, experimental measurements will be performed on live cactus specimens.

4.2. Numerical ccalculations

Two-dimensional RANS calculations will be carried out up to Re = 10°. The pressure
and skin friction distributions on the surface will be examined for various cavity depth
to evaluate the effect on the local flow characteristics.

The effect of the location of the laminar/turbulent transition must be investigated,
together with the impact of the turbulence modeling.
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FicurE 11. Velocity profiles in the wake of cylinders. simulations (Re = 100,000);
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In addition, three-dimensional direct simulations will be required to perform a fair com-
parison with the experimental measurements in the subcritical and transcritical range.
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Interacting flamelet model for non-premixed
turbulent combustion with local extinction and
re-ignition

By Heinz Pitsch, Chong M. Cha AND Sergei Fedotov

1. Motivation and objectives

The ability of unsteady laminar flamelet models to yield accurate predictions in non-
premixed turbulent reacting flows has been investigated in many different studies. These
include different geometries and flow situations, such as jet flames (Pitsch et al. 1998;
Pitsch & Steiner 2000), diesel engines (Pitsch et al. 1996), and also show that even
complex chemical processes such as the formation of NO, and soot can be described
with reasonable accuracy.

A particularly appealing feature of the model is that the local instantaneous scalar
dissipation rate, which describes the rate of molecular mixing of fuel and oxidizer and is
known to be the most important parameter in non-premixed combustion, appears explic-
itly as a parameter in the model. This permits the study of influence of this important
quantity and simplifies the physical interpretation.

However, because of the simplifications made in the derivation of the flamelet equa-
tions, the model is not generally valid for arbitrary situations and fails, for instance, in
predicting lifted flames or when local extinction and re-ignition events are important.

Local extinction and re-ignition has recently become one of the most prominent re-
search topics in non-premixed turbulent combustion. Many studies have been devoted
to this problem including; direct numerical simulations (DNS) (Sripakagorn et al. 2000,
2001); modeling studies using different approaches such as transported probability density
function (pdf) methods (Xu & Pope 2000), and the one-dimensional turbulence model
(Hewson & Kerstein 2001); and experiments (Barlow & Frank 1998). The Sandia flame
series, investigated experimentally by Barlow & Frank (1998) consists of six flames with
different Reynolds numbers and degrees of local extinction. These flames have become a
benchmark data set for modeling studies.

Xu & Pope (2000) have presented predictions of three different Sandia flames, ranging
from moderate to high degree of local extinction, with reasonable agreement with the
experiments. In this study only the ensemble-averaged value of the scalar dissipation rate
is used in the simulations, and fluctuations of this quantity are neglected.

The influence of the fluctuations of the scalar dissipation rate has been investigated
by Pitsch & Fedotov (2001). In this work, the flamelet equations were used, with the
scalar dissipation rate as a random variable. To describe the evolution of the scalar
dissipation rate, a stochastic differential equation (SDE) was formulated. From these
governing equations, a Fokker-Planck equation for the joint probability density function
of the stoichiometric temperature and the scalar dissipation rate was derived. It has been
shown that the fluctuations of the scalar dissipation rate can have a very strong effect,
leading to local extinction even when the average scalar dissipation rate is below the
extinction limit. However, because the study presented in Pitsch & Fedotov (2001) was




66 H. Pitsch, C. M. Cha & S. Fedotov

based on the flamelet equations, which cannot account for re-ignition, the real behavior
of the physical system could not be investigated.

In the present work, an extension of the flamelet model is presented, which can ac-
count for re-ignition. The resulting modeled equations are solved numerically, and the
mechanisms of extinction and re-ignition are investigated.

2. Governing equations
2.1. Ezxtended flamelet model

To derive the extended flamelet equations, the equation for the temperature T is consid-
ered. The extended flamelet equations for other reactive scalars can be derived similarly.
Since the model will subsequently be compared to the results of direct numerical sim-
ulations (DNS) we assume constant heat capacity ¢, and negligible temporal pressure
change and radiative heat loss. The chemistry is described by a one-step reversible reac-
tion with net reaction rate w. A more general formulation, accounting for the neglected
terms and complex chemistry, is a trivial extension of the following derivation. In addition
to the temperature equation, we will use the transport equation for the mixture fraction
Z. If the Lewis number of the mixture fraction is assumed to be unity, the equations for
mixture fraction Z = Z(t,z1,z2,%3) and temperature T = T'(t,z,, T2, 3) can be written
as

p% +pv-VZ-V-(pDVZ)=0 (2.1)
pa—T +pv-VT -V - (pDVT) — pgw =0, (2.2)
ot Cp

where t is the time, z; are the spatial coordinates, p the density, v the velocity vector,
D the diffusivity of the mixture fraction, and @ is the heat of reaction.

We now want to derive a flamelet equation which accounts for a burning state, but also
for local extinction and re-ignition processes. In the derivation of the flamelet equations
as proposed by Peters (1983, 1984), a coordinate transformation of the Crocco type is
introduced into the governing equations, such that

(t1x11z2,m3) a4 (t’ Za ZZ’ZS)’ (23)

in which the mixture fraction is introduced as a new independent coordinate. This implies
that the new coordinate is locally attached to an iso-surface of the mixture fraction, say
the stoichiometric mixture fraction Z, and the new coordinates Z,, Z3 lie in this surface.
Then the transformation of the derivatives is given by

0
0 8 0Z 90 ] . _
% 5t ez V—VZe=+Var, with Vz = g;ggz - (2.4)

Introducing this into Eq. (2.2) and using Eq. (2.1), one obtains, for T = T'(t, Z, Z3, Z3),

o _pFT_ Q

. d
SRy +pv-Vz. T =2VZ- — (pDV 7. T)

07z

b3}
=Vz1-(pDVz, T)-V 7, T- VZB_Z (pD) = 0. (2.5)
Note that in Egs. (2.2) and (2.5) there appear two derivatives with respect to time which
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are associated with two different coordinate systems. In Eq. (2.2), 0T/0t is the rate
of change of temperature as observed at a fixed point in space (z1,2,%3), whereas in
Eq. (2.5) 8T/ 0t represents the rate of change of the temperature when moving with the
iso-surface of the mixture fraction at fixed (Z, Zs, Z3).

In a subsequent asymptotic analysis, Peters (1983, 1984) shows that changes of the re-
active scalars within surfaces of constant mixture fraction are small compared to changes
in the direction normal to this surface, and can therefore be neglected. This leads to the
flamelet equations,consisting of the first three terms in Eq. (2.5)

T px 8T Q@

o 2em =0 26)
where the scalar dissipation rate, defined as
x =2D(VZ)? (2.7)

appears as a new parameter. This equation has been analyzed in DNS of isotropic decay-
ing turbulence with initially non-premixed reactants by Sripakagorn et al. (2000, 2001).
It has been shown that Eq. (2.6) describes the extinction process very well, but obviously
fails to predict re-ignition. At locations where local extinction has occurred, the scaling
in Eq. (2.5) changes and the arguments leading to Eq. (2.6) are no longer true. Terms de-
scribing transport within surfaces of constant mixture fraction are then of leading order
and therefore have to be considered. After extinction, the maximum flamelet temperature
is small, so that changes in the direction normal to iso-surfaces of the mixture fraction
can be neglected. If it is argued that re-ignition occurs by partially-premixed flame prop-
agation along iso-surfaces of the mixture fraction, then an asymptotic analysis similar to
that of Peters (1983) can be performed. Introducing a small parameter € = l[rVZ, where
€ represents the ratio of length scales of order-unity temperature changes in direction
normal to the direction along iso-mixture fraction surfaces, the coordinates Z; and Z3
can be replaced by stretched coordinates such that & = Z,/e and &3 = Zz/e. Then

0
Ver=Vzife with Ve = ( /92 ) . (2.8)
0/0¢s

Introducing Eq. (2.8) into Eq. (2.5) and keeping only leading-order terms, the equations
describing the re-ignition process are obtained as

or
P 5

where the original coordinates Z, and Z; have been re-introduced. No scaling has been
assumed for the time and the reaction term, but it is obvious that the accumulation and
reaction terms are important for re-ignition, so these have been retained in the equation.

The leading-order equation which can describe both the extinction and re-ignition
processes can now be obtained by combining Eqgs. (2.6) and (2.9), yielding the extended
flamelet equation as

; |
~ V21 (pDVLLT) - p 2w =0, (2.9)
P

2 ,
p——-—-———VZJ_'(/)DVZ_LT)—PEQ‘W:O- (2.10)
P

In this equation the second term describes the flamelet-type diffusive transport, while
the third term describes the interaction of different flamelets. The coordinates Zs and Z3
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still measure physical space while Z is the mixture fraction: note, however, that because
Z, Z5, and Z3 form an orthogonal coordinate system, the partial derivatives with respect
to Z, and Z3; have to be evaluated at constant Z.

2.2. Modeled extended flamelet equation

To apply Eq. (2.10) in a numerical simulation, the newly-appearing diffusion term has to
be modeled. A simple modeling approach is to represent this term by a molecular-mixing
model frequently used in transported pdf modeling. Using for instance an Interaction by
Exchange with the Mean (IEM) model, this term can be represented as

1 T-(T|Z
=Vz1-(pDVz,.T) = —-"‘”(l—>,
P Tiem

(2.11)
where (T'|Z) is the average of the temperature conditioned on a given value of the mixture
fraction, and Tignm is the mixing time. The conditional average has been used here, since,
as mentioned above, the diffusion term modeled in Eq. (2.11) describes only mixing at a
given mixture fraction. It is well known that the application of IEM as a mixing model for
reactive scalars creates problems if mixing occurs between states with different mixture
fraction. It is interesting to note that in the current application of the IEM model, where
mixing occurs only on surfaces of constant mixture fraction, this problem does not occur.
The modeled extended flamelet equation is then given by
oT x0T + T-{T\Z) @

?37 - §3Z2 TieM - Z;w =0. (212)

The remaining modeling problem is now the determination of the mixing time Tigm.
This can be done in different ways. A particularly appealing way is to make the as-
sumption that all changes of the temperature along iso-surfaces of the mixture fraction
are caused by changes in the scalar dissipation rate. The advantage of this assumption
is that it incorporates the fact that extinction is caused by excessive scalar dissipation
rate. Introduction of the scalar dissipation rate as a new independent coordinate seems
reasonable since the scalar dissipation is the most important parameter in non-premixed
combustion.

For the following derivation we first assume that the local instantaneous scalar dissi-
pation rate can be described as a one-parameter function of the mixture fraction

X(ty 1:1,.’1?2,133) = Xst(t) $1,Z2,£3)f(Z) . (2‘13)

The exact form of the function f(Z) is not important here, and can for instance be taken
from a laminar counterflow configuration (Peters 1993), an unsteady mixing layer (Peters
1984), or a semi-infinite mixing layer (Pitsch et al. 1998). This assumption is valid at
least within a small region around the reaction zone, which is assumed to be laminar,
and has also been corroborated by the DNS data used for a validation of the present
model (Sripakagorn et al. 2000, 2001), for the conditional mean quantities. A detailed
discussion of this assumption in the context of this DNS data can be found in Cha et al.
(2001). A transport equation for Xs; = Xst(t, Z1,Z2, 3) has also been given by Cha et al.
(2001) as

)
PR 4 v Ve = V- (pDVxw) = F =0, (2.14)
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where the source term F is given by

_9PD 0D, 1 2812) G
F—2 VZ vat+2stt 6Z2 +f(Z),

(2) oz
and G describes the production of scalar dissipation rate by strain-rate fluctuations and
the dissipation by molecular diffusion.

With this assumption, an additional coordinate transformation t, Z, Z3, Zs — t, Z, Xst
can be used to replace the spatial coordinates Z; and Z3 by the scalar dissipation rate, and
an additional transport term in scalar-dissipation-rate space is obtained. The resulting
equation is similar to the doubly-conditional moment-closure equations derived by Cha
et al. (2001), but for local instantaneous quantities instead of conditionally-averaged
ones.

It follows from Eq. (2.13) that xs: is not a function of Z, and therefore

(2.15)

0/62,
Vzixss = Vzxss with Vz=| 0/0Z; (2.16)
0/8Z;

Then the transformation of the derivatives is given by

0 o Oxst O
5 5T 5t Oy

Vzi — Vxst (2.17)

Oxst )

Introducing Eq. (2.17) into Eq. (2.10), and using Eq. (2.14) with the coordinates re-
placed by Eq. (2.4), one obtains the equation for T = T'(t, Z, xst) as

8T _ 8T x&T w®T Q _
5T Oxse 202° 2 8x% cpw_o’ (2.18)

where ~s; has been introduced as v = 2D (szt)z. The convection term appearing in
Eq. (2.18) from Eq. (2.14) can be neglected, by the same arguments as in the analysis
that led to Eq. (2.9). Alternatively, the fourth term in Eq. (2.5) could be retained and
would cancel with the convection term appearing here.

Equation (2.18) is generally very similar to the flamelet equations given by Peters
(1984), but with two additional terms, a convection term in xsi-space caused mainly by
random production and dissipation of the scalar dissipation rate, and a diffusion term in
Xst-Space with s as the diffusion coefficient.

The solution of Eq. (2.18) describes the temperature evolution in a coordinate system
attached to a point of constant mixture fraction and constant scalar dissipation rate.
However, we are interested in the development of a flamelet, which is attached to a
stoichiometric surface at the origin of the coordinate system introduced by Eq. (2.17).
This is generally not at constant scalar dissipation rate. The ¢, Z, xst-coordinate system
moves relative to this because of the production and dissipation of scalar dissipation rate
F given by Eq. (2.15). We therefore introduce the concept of a “flamelet particle” and
introduce a corresponding coordinate system. Let xs:(t) be the position of a flamelet
particle in xsi-space. By definition, this particle moves with the net production rate F
such that

Oxst

2t = Flt. 2, x()) - (2.19)
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Then Eq. (2.18) can be written as

T x(t)8T 4 0*T Q@ _
5 202 283 U0 (2:20)

where the scalar dissipation rate st (t) is a random parameter determined by the solution
of Eq. (2.19).
We now introduce the non-dimensional reaction source term w, as defined in Pitsch &
Fedotov (2001). and the non-dimensional temperature 6 defined by
= T - Tst,u
Tst,b - Tst,u
where Ty 5 is the stoichiometric adiabatic flame temperature, also defined in Pitsch &
Fedotov (2001). The non-dimensional time and scalar dissipation rate are defined as

6 with Tst,u - T2 + (Tl - Tz) Zst (2.21)

7= and z=-X ) (2.22)
a Xst,0
where a = AZZ (1 — Zy,) and AZ is the reaction-zone thickness, and et ¢ is a reference
value, here chosen to be the stoichiometric scalar dissipation rate at extinction.
Equation (2.18) can then be written as
09 az(r) 8% Yg(r) 5%
A - —w(f) = 2.2
5 2 a2z 2 &z w®=0 (2.23)
where T is a dimensionless number representing the ratio of the time scales of the
transport in the direction of xs; and the transport in the direction of Z, and is defined
by

Ty = B (2.24)
xst,O

The transport term in the direction of Z always causes heat losses away from the reaction
zone. In contrast to this, if a locally-extinguished spot is considered, the transport term
in the z-direction leads to a gain of heat from hotter surrounding areas. Hence, T
characterizes the ability to re-ignite and will therefore be called the re-ignition parameter.
Consequently, for Ts; = 0 the flamelet equations as given in Pitsch & Fedotov (2001) are
recovered.

Based on the assumption that temperature changes along iso-surfaces of the mixture
fraction are caused only by changes in the scalar dissipation rate, we have now derived
an equation similar to Eq. (2.12). However, the present form of the mixing term in zg
allows a straightforward physical modeling of the mixing time Tigm, if it is modeled in
a manner similar to Eq. (2.11). Introducing the IEM-model for the diffusion term in the
zg-direction in Eq. (2.23) we obtain

80 azd® | Tu 6-(01Z,Ts)

or " 2072 '3 (zs)®  Ciem w(6) =0, (2.25)

where (T'|Z, T4) is the mean temperature, conditioned on Z and Y, of the system at a
particular time 7. The mixing time Tigm has been modeled as

2
Tigm = CIEMM" (2.26)

Vst

and the constant Cigy is set to unity for subsequent numerical simulations.
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2.3. Stochastic differential equations for zo and T

In Eq. (2.25), x5 and Y are fluctuating random quantities. In order to solve Eq. (2.25)
we need to derive SDEs for both. This can be done according to the procedure outlined
in Pitsch & Fedotov (2001). The resulting equations are

Tst Tt 2
=—— — z —= 2
dzst 3 In <(xst)) dr+o \/cS_zmSt odW (7) (2.27)
and
T st 2
dYs = 5 In ((Tst)) dr + oy \/ET“ odW (1), (2.28)

where dW is a Wiener process. Here 6, and v represent the non-dimensional charac-
teristic times for the probability density functions (pdf) of the respective quantities to
reach a steady state, o, and or are the variance parameters of the stationary log-normal
pdf.

Equations (2.25), (2.27), and (2.28) denote a closed system of SDEs and can be solved
numerically to obtain the joint pdf of the temperature, the scalar dissipation rate, and
the re-ignition parameter in the form p(7, Og¢, Tst, Lst)-

2.4. Simplified model

In Pitsch & Fedotov (2001) a Fokker-Planck equation for the joint pdf of temperature
and the scalar dissipation rate was given and the corresponding system of SDEs for
temperature and scalar dissipation rate was discussed. Here, this formulation has been
extended to account for re-ignition, resulting in an additional SDE for the re-ignition
parameter Yg. The solution of Eqgs. (2.25), (2.27), and (2.28) is fairly straightforward,
and the additional SDE significantly increases the computational cost. However, since the
resulting pdf is three-dimensional, the computational requirements for achieving similar
statistical convergence are substantially higher. For this reason we want to investigate a
simplified model, where only the mean re-ignition parameter is considered in Eq. (2.25)
and the SDE for this quantity does not have to be solved. This model will also be
compared to the full model to assess the importance of the Yg-fluctuations.
Multiplying Eq. (2.25) with p(Ts) = 6(Tst — (Tst)) and integrating over Yy yields

99 ax 80 (YTs) 6-(0Z)
or 2 08Z% " 2(z4)> CiEM

w(8) =0. (2.29)

This equation can be solved with Eq. (2.27) to obtain the joint pdf of temperature and
scalar dissipation rate.

3. Results
3.1. Analysis

In order to analyze the influence of the additional term arising in the model, the transport
term in Z will be modeled as described in Pitsch & Fedotov (2001), where also the
necessary assumptions are discussed in detail. The equation can then be formulated at
Zg leading to

06t

—5;_- + Tt Ot +

Tst ost - (estrrst) -
2(zs)?  CiEm

w(8s) = 0. (3.1)
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FIGURE 1. S-curves from steady state solutions of Eq. (3.1) for different values of Ys: 0

Assuming that Ty and g are constant, the steady-state solutions of Eq. (3.1) are easily
computed. These solutions are shown in Fig. 1 for varying Y. In the case Ty = 0, the
well-known S-shaped curve is recovered. It is indicated that in the region to the right
of the curves, the temporal change of O is always negative; in the region left of the
curves, always positive. Hence, if the scalar dissipation rate is increased beyond the value
at the upper turning point, sudden extinction occurs. Re-ignition in this case can occur
only if the scalar dissipation rate decreases to values lower than the lower turning point,
where the temporal temperature change is always positive until the upper steady state
is reached.

The influence of the diffusion term in x-space becomes very obvious in the discussion
of the steady-state solutions for non-zero (Ts;). For (Ts;) = 1 this transport term leads
to a heat flux from the hot surroundings to extinguished particles located on the lower
steady branch. This additional term hence leads to a shift of the lower turning point
to higher scalar dissipation rates. Extinguished particles can therefore re-ignite at much
higher values of the scalar dissipation rate. This trend continues for increasing (Ys;). The
higher the value of (Ys), the higher the value of scalar dissipation rate, which allows for
re-ignition. For very large values of (Y}, as shown for (Tg;) = 100, the turning points of
the S-curve, and thereby also extinction as well as re-ignition events, disappear. Instead,
all states on the steady curve are stable.

3.2. Numerical simulation
3.2.1. Numerical method

Monte-Carlo simulations are used to solve the system of equations (3.1), (2.27), and
(2.28). N,, different realizations are used to represent the statistical behavior of these
equations. The temperature equation is integrated using a second-order Runge-Kutta
scheme. The equations for the SDEs for z,; and Y are integrated with the second-
order-accurate method of Milshtein (1978). The solutions for these notional particles are
then used to obtain the pdf.

3.2.2. Influence of the re-ignition parameter Y

For the results presented in this section, the variance parameters o and the time scale
ratios ¢ appearing in Egs. (2.27) and (2.28) are all chosen to be unity. For Eq. (2.27),
this choice has been justified in Pitsch & Fedotov (2001). All other parameters, such as
the Damkéohler number and the heat release parameter, have been chosen as in Pitsch &
Fedotov (2001). Three different cases will be shown: (Y¢) =1, 10, and 100. In addition,
the case (Ys) = 0 is shown as a reference. This corresponds to the case studied in
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FIGURE 2. Temporal development of arbitrary extinguishing particles (thin lines). Thick lines
are steady state solutions of Eq. (3.1) for (Tst) = 0 (solid line) and (Ys) = 10 (dashed line)

Pitsch & Fedotov (2001), where the transport in y-space does not appear in the flamelet
equations. -

Numerical results for the system of SDEs are shown in the following Figures. In Fig. 2,
it is demonstrated that the model presented here is capable of predicting re-ignition. In
both Figures the paths of some extinguishing notional particles are shown. The left-hand
Figure is for (Ys;) = 0; the right-hand Figure shows particles with the same zg history,
but for (Ys) = 10. It has been discussed earlier that for (Ys;) = 0, re-ignition cannot
occur, which can clearly be seen in the left-hand Figure. However, in the right-hand
Figure it is observed that the extinguishing particles undergo random changes of the
scalar dissipation rate. If =5, becomes smaller than the correseponding steady solution,
the temporal temperature change becomes positive, and the particle can re-ignite.

The pdfs p(Oss, zst) for (Tst) =0, 1, 10, and 100 are given in Fig. 3. For (Ys) =0 a
large number of particles is extinguished, and this is seen in the Figure as a very narrow
distribution at low ©g. For (Ys;) = 1 the scalar dissipation rate where re-ignition can
occur is already greatly increased. The pdf has a similar S-shape to the steady-solution
curve, but is more pronounced. On the right-hand side of the steady-state curve, the
probability of low temperature is still very high. The reason is that the probability for
zst to decrease below the re-ignition value is still very low. At (Yst) = 10, the pdf is very
similar to the steady-state line, and the probability of low temperatures has strongly
decreased. It should be noted that these S-shaped pdfs have also been found in DNS
data (Sripakagorn et al. (2000, 2001)). At (T,;) = 100 extinction can hardly ever occur.
Hence there is a very low probability of finding low temperatures.

3.2.3. Application to DNS of non-premized combustion in isotropic turbulence

To further investigate and validate the proposed model it-has been applied to the DNS
experiment of Sripakagorn et al. (2000, 2001). This DNS has been specifically designed
to investigate extinction and re-ignition. A one-step, reversible reaction between fuel and
oxidizer evolves in isotropic, homogeneous, and decaying turbulence. Three different sim-
ulations, for different frequency coefficients of the global reaction, lead to low, moderate,
and high levels of local extinction. These cases are referred to as cases A, B, and C, re-
spectively. For case B, the maximum mean stoichiometric scalar dissipation rate is equal
to the extinction value of scalar dissipation rate; for case A, the maximum mean scalar
dissipation rate is much lower, and for case C much higher, than the extinction value.
The numerical parameters used in these simulations are given in Cha & Pitsch (2001).

Here, we will present the results of two different models:
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FIGURE 3. Joint pdfs p(Ost, zst) for {Ys:) = 0 (upper left), (Ts:) = 1 (upper right), (Ts) = 10
(lower left), (Ts:) = 100 (lower right); lines are steady state solutions of Eq. (3.1) for (Ts:) = 0
(solid) and (Ys) = 10 (dashed)

(a) The full model, solving Egs. (2.25), (2.27), and (2.28). In this model the temper-
ature O, the scalar dissipation rate zg;, and the re-ignition parameter Ys; are treated
as random variables; hence an SDE is solved for each of these quantities;

(b) The simplified model, given by the solution of Egs. (2.29) and (2.27). In this model
only the mean of the re-ignition parameter Ty, is considered, and no SDE is solved for
Tst-

The results of the Monte Carlo simulations are compared to DNS data in Fig. 4. Results
are shown from left to right in order of increasing level of local extinction. Results of the
full model are given in the upper row, results of the simplified model in the lower row.
Numerical results are given by the lines, DNS data by the symbols. Closed symbols are
the conditional mean temperature, open symbols represent the conditional fluctuations.
In the DNS the mean scalar dissipation rate first increases up to approximately t* = 0.25,
where t* is the time non-dimensionalized with the initial large-eddy turnover time, and
afterwards decreases. Correspondingly, all cases show an extinction-dominated phase in
the beginning at around ¢* = 0.5. At later times, when the mean scalar dissipation rate
becomes smaller, re-ignition becomes important, and the mean temperature increases
again. This is also reflected in the conditional RMS values of the temperature. When the
scalar dissipation rate increases and thereby the probability of finding local extinction
increases, the pdf of the temperature becomes bimodal and hence the RMS becomes
large. During the re-ignition period, extinguished pockets change to high temperature
again, the pdf approaches a unimodal shape again, and the RMS values become smaller.

For case A, both models predict the conditional mean as well as the conditional vari-
ances very well. For moderate extinction (case B), the full model predicts a consistently
lower temperature. The analysis shows that the reason for this is the overprediction of
local extinction and is not necessarily related to the re-ignition model. Extinction has
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FIGURE 4. Modeling results (lines) for the full model (upper row) and simplified model (lower
row) compared to DNS results (symbols). Closed symbols are the conditional mean temperature,
open symbols the root mean squares.

been shown in Sripakagorn et al. (2000, 2001) to be very well predicted by the unsteady
flamelet model, if the exact history of the scalar dissipation rate is known. Therefor